Influence of the pore structure parameters of mesoporous anatase microspheres on their performance in lithium-ion batteries
详细信息    查看全文
  • 作者:Zixia Lin (1)
    Mingbo Zheng (1)
    Bin Zhao (1)
    Gang Wang (1)
    Lin Pu (1)
    Yi Shi (1)
  • 关键词:Lithium ; ion batteries ; Mesoporous TiO2 ; Anatase ; Pore structure parameters
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:18
  • 期:6
  • 页码:1673-1681
  • 全文大小:
  • 参考文献:1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652-57 CrossRef
    2. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928-35 CrossRef
    3. Shin JY, Samuelis D, Maier J (2011) Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater 21:3464-472 CrossRef
    4. Wang YG, Li HQ, He P, Hosono E, Zhou HS (2010) Nano active materials for lithium-ion batteries. Nanoscale 2:1294-305 CrossRef
    5. Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2:818-37 CrossRef
    6. Ortiz GF, Hanzu I, Knauth P, Lavela P, Tirado JL, Djenizian T (2009) TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries. Electrochim Acta 54:4262-268 CrossRef
    7. Ortiz GF, Hanzu I, Djenizian T, Lavela P, Tirado JL, Knauth P (2009) Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem Mater 2:63-7 CrossRef
    8. González JR, Alcántara R, Nacimiento F, Ortiz GF, Tirado JL, Zhecheva E, Stoyanova R (2012) Long-length titania nanotubes obtained by high-voltage anodization and high-intensity ultrasonication for superior capacity electrode. J Phys Chem C 116:20182-0190 CrossRef
    9. Ren Y, Armstrong AR, Jiao F, Bruce PG (2010) Influence of size on the rate of mesoporous electrodes for lithium batteries. J Am Chem Soc 132:996-004 CrossRef
    10. Liu HS, Bi ZH, Sun XG, Unocic RR, Paranthaman MP, Dai S, Brown GM (2011) Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries. Adv Mater 23:3450-454 CrossRef
    11. Yu L, Wu HB, Lou XW (2013) Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater 25:2296-300 CrossRef
    12. Zheng MB, Qiu DF, Zhao B, Ma LY, Wang XR, Lin ZX, Pan LJ, Zheng YD, Shi Y (2013) Mesoporous iron oxide directly anchored on graphene matrix for lithium-ion battery anodes with enhanced strain accommodation. RSC Adv 3:699-03 CrossRef
    13. Zhao YY, Pang SP, Zhang CJ, Zhang QH, Gu L, Zhou XH, Li GC, Cui GL (2013) Nitridated mesoporous Li4Ti5O12 spheres for high-rate lithium-ion batteries anode material. J Solid State Electrochem 17:1479-485 CrossRef
    14. Lin ZX, Zheng MB, Zhao B, Pan LJ, Pu L, Shi Y (2013) Interweaving of multilevel carbon networks with mesoporous TiO2 for lithium-ion battery anodes. RSC Adv 3:24882-4885 CrossRef
    15. Myung ST, Takahashi N, Komaba S, Yoon CS, Sun YK, Amine K, Yashiro H (2011) Nanostructured TiO2 and its application in lithium-ion storage. Adv Funct Mater 21:3231-241 CrossRef
    16. Gentili V, Brutti S, Hardwick LJ, Armstrong AR, Panero S, Bruce PG (2012) Lithium insertion into anatase nanotubes. Chem Mater 24:4468-476 CrossRef
    17. Zakharova GS, J?hne C, Popa A, T?schner C, Gemming T, Leonhardt A, Büchner B, Klingeler R (2012) Anatase nanotubes as an electrode material for lithium-ion batteries. J Phys Chem C 116:8714-720 CrossRef
    18. Wang Y, Liu SQ, Huang KL, Fang D, Zhuang SX (2010) Electrochemical properties of freestanding TiO2 nanotube membranes annealed in Ar for lithium anode material. J Solid State Electrochem 16:723-29 CrossRef
    19. Ren Y, Hardwick LJ, Bruce PG (2010) Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angew Chem Int Ed 49:1- CrossRef
    20. Guo YG, Hu YS, Maier J (2006) Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem Commun 26:2783-785 CrossRef
    21. Saravanan K, Ananthanarayanan K, Balaya P (2010) Mesoporous TiO2 with high packing density for superior lithium storage. Energy Environ Sci 3:939-48 CrossRef
    22. Ma Y, Ji G, Ding B, Lee JY (2012) Facile solvothermal synthesis of anatase TiO2 microspheres with adjustable mesoporosity for the reversible storage of lithium ions. J Mater Chem 22:24380-4385 CrossRef
    23. Lee KH, Song SW (2011) One-step hydrothermal synthesis of mesoporous anatase TiO2 microsphere and interfacial control for enhanced lithium storage performance. ACS Appl Mater Interfaces 3:3697-703 CrossRef
    24. Wang J, Zhou YK, Hu YY, O’Hayre R, Shao ZP (2011) Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries. J Phys Chem C 115:2529-536 CrossRef
    25. Ryu SY, Kim DS, Jeon JD, Kwak SY (2010) Pore size distribution analysis of mesoporous TiO2 spheres by 1H nuclear magnetic resonance (NMR) cryoporometry. J Phys Chem C 114:17440-7445 CrossRef
    26. Chen D, Cao L, Huang F, Imperia P, Cheng YB, Caruso RA (2010) Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-3?nm). J Am Chem Soc 132:4438-444 CrossRef
    27. Sudant G, Baudrin E, Larcher D, Tarascon JM (2005) Electrochemical lithium reactivity with nanotextured anatase-type TiO2. J Mater Chem 15:1263-269
    28. Jiang CH, Wei MD, Qi ZM, Kudo T, Honma I, Zhou HS (2007) Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. J Power Sources 166:239-43 CrossRef
    29. Chen JS, Tan YL, Li CM, Cheah YL, Luan DY, Madhavi S, Boey FYC, Archer LA, Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124-130 CrossRef
    30. Kang JW, Kim DH, Mathew V, Lim JS, Gim JH, Kim J (2011) Particle size effect of anatase TiO2 nanocrystals for lithium-ion batteries. J Electrochem Soc 158:A59–A62 CrossRef
    31. Zheng MB, Cao J, Liao ST, Liu JS, Chen HQ, Zhao Y, Dai WJ, Ji GB, Cao JM, Tao J (2009) Preparation of mesoporous Co3O4 nanoparticles via solid–liquid route and effects of calcination temperature and textural parameters on their electrochemical capacitive behaviors. J Phys Chem C 113:3887-894 CrossRef
  • 作者单位:Zixia Lin (1)
    Mingbo Zheng (1)
    Bin Zhao (1)
    Gang Wang (1)
    Lin Pu (1)
    Yi Shi (1)

    1. Nanjing National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
  • ISSN:1433-0768
文摘
Monodisperse mesoporous anatase microspheres were prepared by a combination of sol–gel and liquid–crystal template methods. With the change in annealing temperature, the pore structure parameters of samples were regulated. The influence of pore structure parameters on lithium-ion battery performance was systematically investigated. Results of electrochemical test and analysis demonstrated that the pore structure parameters significantly influenced the specific capacity, charging and discharging curves, rate capability, and cycle performance of the batteries. The first irreversible capacity increased with increased specific surface area. Materials with larger specific surface area showed better rate capability. When the average pore size was too small, the transport of Li+ in the electrolyte was impeded, which affected the rate capability of the materials. Based on the charging and discharging curves, the capacity of the plateau section corresponding to lithium insertion/extraction ions in the interstitial octahedral sites of anatase became smaller with increased specific surface area. By contrast, the capacity of the oblique line section corresponding to the Li+ insertion/extraction into/from the surface layer of anatase became larger. The pore volume influenced the cycling stability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700