Characterization of a tannin acyl hydrolase from Streptomyces sviceus with substrate preference for digalloyl ester bonds
详细信息    查看全文
  • 作者:Mingbo Wu ; Qin Wang ; William J. McKinstry…
  • 关键词:Tannase ; Hydrolyzable tannin ; Serine hydrolase ; Streptomyces ; Thermostability ; Kinetics
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:99
  • 期:6
  • 页码:2663-2672
  • 全文大小:999 KB
  • 参考文献:1. Aguilar, CN, Gutierrez-Sanchez, G (2001) Review: sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci Technol Int 7: pp. 373-382 CrossRef
    2. Aguilar, CN, Rodríguez, R, Gutiérrez-Sánchez, G, Augur, C, Favela-Torres, E, Prado-Barragan, LA, Ramírez-Coronel, A, Contreras-Esquivel, JC (2007) Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol 76: pp. 47-59 CrossRef
    3. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215: pp. 403-410 CrossRef
    4. Aslanidis, C, Jong, PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18: pp. 6069-6074 CrossRef
    5. Bagos, PG, Nikolaou, EP, Liakopoulos, TD, Tsirigos, KD (2010) Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics 26: pp. 2811-2817 CrossRef
    6. Banerjee, A, Jana, A, Pati, BR, Mondal, KC, Das Mohapatra, PK (2012) Characterization of tannase protein sequences of bacteria and fungi: an in silico study. Protein J 31: pp. 306-327 CrossRef
    7. Boadi, DK, Neufeld, RJ (2001) Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme Microb Technol 28: pp. 590-595 CrossRef
    8. B?er, E, Breuer, FS, Weniger, M, Denter, S, Piontek, M, Kunze, G (2011) Large-scale production of tannase using the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 92: pp. 105-114 CrossRef
    9. Chater, KF, Biró, S, Lee, KJ, Palmer, T, Schrempf, H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34: pp. 171-198 CrossRef
    10. Curiel, JA, Rodríguez, H, Acebrón, I, Manche?o, JM, Rivas, B, Mu?oz, R (2009) Production and physicochemical properties of recombinant Lactobacillus plantarum tannase. J Agric Food Chem 57: pp. 6224-6230 CrossRef
    11. Farias, GM, Gorbea, C, Elkins, JR, Griffin, GJ (1994) Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica. Physiol Mol Plant Pathol 44: pp. 51-63 CrossRef
    12. Haslam, E, Stangroom, JE (1966) The esterase and depsidase activities of tannase. Biochem J 99: pp. 28-31
    13. Hatamoto, O, Watarai, T, Kikuchi, M, Mizusawa, K, Sekine, H (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175: pp. 215-221 CrossRef
    14. He, F, Hogan, S, Latypov, RF, Narhi, LO, Razinkov, VI (2010) High throughput thermostability screening of monoclonal antibody formulations. J Pharm Sci 99: pp. 1707-1720
    15. Hodgson, DA (2000) Primary metabolism and its control in Streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42: pp. 47-238 CrossRef
    16. Inoue, KH, Hagerman, AE (1988) Determination of gallotannin with rhodanine. Anal Biochem 169: pp. 363-369 CrossRef
    17. Iwamoto, K, Tsuruta, H, Nishitaini, Y, Osawa, R (2008) Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum ATCC 14917(T). Syst Appl Microbiol 31: pp. 269-277 CrossRef
    18. Jiménez, N, Barcenilla, JM, Felipe, FL, Rivas, B
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
The search for new tannases with novel enzymatic properties suitable for industrial applications has been a continuous effort since the first discovery of the enzyme more than a century ago. A tannase gene (Ss-Tan) from the Gram-positive bacterium Streptomyces sviceus was identified, chemically synthesized, and cloned into a C-terminal His-tagged vector for expression in Escherichia coli. The tannase possesses the active site motif of GXSXG that is conserved for serine hydrolases. The residues that constitute the catalytic triad and galloyl binding site in bacterial tannases are found conserved in Ss-Tan, which include Ser209, Asp452, His484 and Lys370, Glu384, Asp454, respectively. Ss-Tan was overexpressed in E. coli BL21-AI cells with high productivity. Enzymatic assay revealed that the enzyme displays tannase activities to hydrolyze both the ester bonds and depside bonds in hydrolyzable tannins. Kinetic analysis indicated that the enzyme preferentially acts on depside bonds with considerably higher substrate affinity and catalytic efficiency. The enzyme showed maximum activity around pH 8.0 and at 50?°C with the highest melting temperature close to 70?°C. The high depsidase activity and thermostablility of Ss-Tan may make the enzyme suitable for potential industrial applications to achieve complete digestion of hydrolyzable tannins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700