Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol
详细信息    查看全文
  • 作者:Xuzhe Wang (1)
    Jianwei Fu (1)
    Minghuan Wang (1)
    Yajie Wang (1)
    Zhimin Chen (1)
    Jianan Zhang (1)
    Jiafu Chen (1)
    Qun Xu (1)
  • 刊名:Journal of Materials Science
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:49
  • 期:14
  • 页码:5056-5065
  • 全文大小:
  • 参考文献:1. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578-586 CrossRef
    2. Noguez C, Garzon IL (2009) Optically active metal nanoparticles. Chem Soc Rev 38:757-71 CrossRef
    3. Liang M, Su RX, Qi W, Yu YJ, Wang LB, He ZM (2014) Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. J Mater Sci 49:1639-647. doi:10.1007/s10853-013-7847-y CrossRef
    4. Tang SC, Vongehr S, Meng XK (2010) Controllable incorporation of Ag and Ag–Au nanoparticles in carbonspheres for tunable optical and catalytic properties. J Mater Chem 20:5345-436 CrossRef
    5. Neouze M-A (2013) Nanoparticle assemblies: main synthesis pathways and brief overview on some important applications. J Mater Sci 48:7321-349. doi:10.1007/s10853-013-7542-z CrossRef
    6. John J, Gravel E, Hagege A, Li HY, Gacoin T, Doris E (2011) Catalytic oxidation of silanes by carbon nanotube–gold nanohybrids. Angew Chem Int Ed 50:7533-536 CrossRef
    7. Cutrufello MG, Rombi E, Cannas C, Casu M, Virga A, Fiorilli S, Onida B, Ferino I (2009) Synthesis, characterization and catalytic activity of Au supported on functionalized SBA-15 for low temperature CO oxidation. J Mater Sci 44:6644-653. doi:10.1007/s10853-009-3510-z CrossRef
    8. Liu Y, Fan Y, Yuan Y, Chen Y, Cheng F, Jiang SC (2012) Amphiphilic hyperbranched copolymers bearing a hyperbranched core and a dendritic shell as novel stabilizers rendering gold nanoparticles with an unprecedentedly long lifetime in the catalytic reduction of 4-nitrophenol. J Mater Chem 22:21173-1182 CrossRef
    9. Idakiev V, Tabakova T, Tenchev K, Yuan ZY, Ren TZ, Vantomme A, Su BL (2009) Gold nanoparticles supported on ceria-modified mesoporous–macroporous binary metal oxides as highly active catalysts for low-temperature water–gas shift reaction. J Mater Sci 44:6637-643. doi:10.1007/s10853-009-3574-9 CrossRef
    10. Zhao M, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120:4877-878 CrossRef
    11. Carabineiroa SAC, Martinsb LMDRS, Avalos-Borjad M, Buijnsterse JG, Pombeiroc AJL, Figueiredo JL (2013) Gold nanoparticles supported on carbon materials for cyclohexane oxidation with hydrogen peroxide. Appl Catal A 467:279-90 CrossRef
    12. Jarrais B, Silva AR, Ribeiro LS, Rodrigues EG, Orfao JJM, Pereira MFR, Figueiredo JL, Freire C (2013) Spontaneous gold decoration of activated carbons. Inorg Chim Acta 408:235-39 CrossRef
    13. Wang D, Villa A, Su DS, Prati L, Schlogl R (2013) Carbon-supported gold nanocatalysts: shape effect in the selective glycerol oxidation. ChemCatChem 5:2717-723 CrossRef
    14. Cui Y, Kuang YJ, Zhang XH, Liu B, Chen JH (2013) Spontaneous deposition of Pt nanoparticles on Poly(diallyldimethylammonium chloride)/CARBON NANOTUBE HYBRIDS and their electrocatalytic oxidation of methanol. Acta Phys Chim Sin 29:989-95
    15. Zhang YF, Xu CL, Li BX, Li YB (2013) In situ growth of positively-charged gold nanoparticles on single-walled carbon nanotubes as a highly active peroxidase mimetic and its application in biosensing. Biosens Bioelectron 43:205-10 CrossRef
    16. Kumar R, Gravel E, Hagege A, Li HY, Jawale DV, Verma D, Namboothiri INN, Doris E (2013) Carbon nanotube-gold nanohybrids for selective catalytic oxidation of alcohols. Nanoscale 5:6491-497 CrossRef
    17. Kumar R, Gravel E, Hagege A, Li HY, Verma D, Namboothiri INN, Doris E (2013) Direct reductive amination of aldehydes catalyzed by carbon nanotube/gold nanohybrids. ChemCatChem 5:3571-575 CrossRef
    18. John J, Gravel E, Namboothiri INN, Doris E (2012) Advances in carbon nanotube-noble metal catalyzed organic transformations. Nanotechnol Rev 1:515-39 CrossRef
    19. Vijwani H, Mukhopadhyay SM (2012) Palladium nanoparticles on hierarchical carbon surfaces: a new architecture for robust nano-catalysts. Appl Surf Sci 263:712-21 CrossRef
    20. Quinn BM, Lemay SG (2006) Single-walled carbon nanotubes as templates and interconnects for nanoelectrodes. Adv Mater 18:855-59 CrossRef
    21. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A 253:337-58 CrossRef
    22. Liu XC, Wang GC, Liang RP, Shi L, Qiu JD (2013) Environment-friendly facile synthesis of Pt nanoparticles supported on polydopamine modified carbon materials. J Mater Chem A 1:3945-953 CrossRef
    23. Auer E, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal A 173:259-71 CrossRef
    24. Murugan E, Vimala G (2013) Synthesis, characterization, and catalytic activity for hybrids of multi-walled carbon nanotube and amphiphilic poly(propyleneimine) dendrimer immobilized with silver and palladium nanoparticle. J Colloid Interface Sci 396:101-11 CrossRef
    25. Eder D (2010) Carbon nanotube-inorganic hybrids. Chem Rev 110:1348-385 CrossRef
    26. Yuan WZ, Sun JZ, Dong YQ, Haussler M, Yang F, Xu HP, Qin AJ, Lam JWY, Zheng Q, Tang BZ (2006) Wrapping carbon nanotubes in pyrene-Containing poly(phenylacetylene) chains: solubility, stability, light emission, and surface photovoltaic properties. Macromolecules 39:8011-020 CrossRef
    27. Petrov P, Stassin F, Pagnoulle C, Jerome R (2003) Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers. Chem Commun 23:2904-905 CrossRef
    28. Yuan WZ, Sun JZ, Liu JZ, Dong YQ, Li Z, Xu HP, Qin A, Haussler M, Jin JK, Zheng Q, Tang BZ (2008) Processable hybrids of ferrocene-containing poly(phenylacetylene)s and carbon nanotubes: fabrication and properties. J Phys Chem B 112:8896-905 CrossRef
    29. Lou XD, Daussin R, Cuenot S, Duwez AS, Pagnoulle C, Detrembleur C, Bailly C, Jerome R (2004) Synthesis of pyrene-containing polymers and noncovalent sidewall functionalization of multiwalled carbon nanotubes. Chem Mater 16:4005-011 CrossRef
    30. Kang YJ, Taton TA (2003) Micelle-encapsulated carbon nanotubes: a route to nanotube composites. J Am Chem Soc 125:5650-651 CrossRef
    31. Liu ZL, Su FB, Zhang XH, Tay SW (2011) Preparation and characterization of PtRu nanoparticles supported on nitrogen-doped porous carbon for electrooxidation of methanol. ACS Appl Mater Interfaces 3:3824-830 CrossRef
    32. Richards PI, Steiner A (2004) Cyclophosphazenes as nodal ligands in coordination polymers. Inorg Chem 43:2810-817 CrossRef
    33. Fu JW, Wang MH, Zhang C, Wang XZ, Wang HF, Xu Q (2013) Template-induced covalent assembly of hybrid particles for the facile fabrication of magnetic Fe3O4–polymer hybrid hollow microspheres. J Mater Sci 48:3557-565. doi:10.1007/s10853-013-7150-y CrossRef
    34. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025-102 CrossRef
    35. Shenhar R, Norsten TB, Rotello VW (2005) Polymer-mediated nanoparticle assembly: structural control and applications. Adv Mater 17:657-69 CrossRef
    36. Pang S, Kondo T, Kawai T (2005) Formation of dendrimer-like gold nanoparticle assemblies. Chem Mater 17:3636-641 CrossRef
    37. Hussain I, Graham S, Wang Z, Tan B, Cooper AI, Brust M (2005) Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1-?nm range using polymeric stabilizers. J Am Chem Soc 127:16398-6399 CrossRef
    38. Fu JW, Xu Q, Chen JF, Chen ZM, Huang XB, Tang XZ (2010) Controlled fabrication of uniform hollow core porous shell carbon spheres by the pyrolysis of core/shell polystyrene/cross-linked polyphosphazene composites. Chem Commun 46:6563-565 CrossRef
    39. Fu JW, Huang XB, Huang YW, Zhang JW, Tang XZ (2009) One-pot noncovalent method to functionalize multi-walled carbon nanotubes using cyclomatrix-type polyphosphazenes. Chem Commun 9:1049-051 CrossRef
    40. Zhang ZQ, Wu YH (2011) NaBH4-induced assembly of immobilized au nanoparticles into chainlike structures on a chemically modified glass surface. Langmuir 27:9834-842 CrossRef
    41. Tunc I, Guvenc HO, Sezen H, Suze S, Correa-Duarte MA, Liz-Marzan LM (2008) Optical response of Ag–Au bimetallic nanoparticles to electron storage in aqueous medium. J Nanosci Nanotechnol 8:3003-007 CrossRef
    42. Lin SY, Tsai YT, Chen CC, Lin CM, Chen C (2004) Two-step functionalization of neutral and positively charged thiols onto citrate-stabilized Au nanoparticles. J Phys Chem B 108:2134-139 CrossRef
    43. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20-2 CrossRef
    44. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735-43 CrossRef
    45. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on Titania with the appearance of nonmetallic properties. Science 281:1647-650 CrossRef
    46. Hodak JH, Henglein A, Hartland GV (2000) Photophysics of nanometer sized metal particles: electron-phonon coupling and coherent excitation of breathing vibrational modes. J Phys Chem B 104:9954-965 CrossRef
    47. Belloni J (1996) Metal nanocolloids. Curr Opin Colloid Interface Sci 1:184-96 CrossRef
    48. Link S, Burda C, Wang ZL, El-Sayed MA (1999) Electron dynamics in gold and gold-silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation. J Chem Phys 111:1255-264 CrossRef
    49. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410-426 CrossRef
    50. Creighton JA, Eadon DG (1991) Ultraviolet-visible absorption spectra of the colloidal metallic elements. J Chem Soc Faraday Trans 87:3881-891 CrossRef
    51. Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode-reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457-471 CrossRef
    52. Zhu L, Xu YY, Yuan WZ, Xi JY, Huang XB, Tang XZ, Zheng SX (2006) One-pot synthesis of poly (cyclotriphosphazene-co-4,4-sulfonyldiphenol) nanotubes via an in situ template approach. Adv Mater 18:2997-000 CrossRef
    53. Liu W, Yang XL, Xie L (2007) Size-controlled gold nanocolloids on polymer microsphere-stabilizer via interaction between functional groups and gold nanocolloids. J Colloid Interface Sci 313:494-02 CrossRef
    54. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293-46 CrossRef
    55. Nakasoa K, Shimadaa M, Okuyamaa K, Depper K (2002) Evaluation of the change in the morphology of gold nanoparticles during sintering. J Aerosol Sci 33:1061-074 CrossRef
    56. Jana D, Dandapat A, De G (2010) Anisotropic gold nanoparticle doped mesoporous boehmite films and their use as reusable catalysts in electron transfer reactions. Langmuir 26:12177-2184 CrossRef
    57. Liu J, Qin G, Raveendran P, Ikushima Y (2006) Facile ″Green-Synthesis, characterization, and catalytic function of β-d -glucose-stabilized Au nanocrystals. Chem Eur J 12:2131-138 CrossRef
    58. Hayakawa K, Yoshimura T, Esumi K (2003) Preparation of gold-dendrimer nanocomposites by laser irradiation and their catalytic reduction of 4-nitrophenol. Langmuir 19:5517-521 CrossRef
    59. Zhang MM, Liu L, Wu CL, Fu GQ, Zhao HY, He BL (2007) Synthesis, characterization and application of well-defined environmentally responsive polymer brushes on the surface of colloid particles. Polymer 48:1989-997 CrossRef
    60. Zhang YW, Liu S, Lu WB, Wang L, Tian JQ, Sun XP (2011) In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol. Catal Sci Technol 1:1142-144 CrossRef
    61. Wang WN, Meng Z, Zhang QH, Jia XD, Xi K (2014) Synthesis of stable Au-SiO2 composite nanospheres with good catalytic activity and SERS effect. J Colloid Interface Sci 15:1-
  • 作者单位:Xuzhe Wang (1)
    Jianwei Fu (1)
    Minghuan Wang (1)
    Yajie Wang (1)
    Zhimin Chen (1)
    Jianan Zhang (1)
    Jiafu Chen (1)
    Qun Xu (1)

    1. School of Materials Science and Engineering, Zhengzhou University, 75 Daxue Road, Zhengzhou, 450052, People’s Republic of China
  • ISSN:1573-4803
文摘
Carbon nanotubes (CNTs) functionalized with cyclotriphosphazene-containing polyphosphazenes (PZS) were found to cause the facile immobilization of Au nanoparticles on the surface. The PZS functional layers not only improved the dispersion of CNTs in aqueous solution but also used as a platform for subsequent immobilization of Au nanoparticles. The functionalized CNTs and the Au@PZS@CNTs nanohybrids were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectrometer, X-ray diffraction, thermogravimetric analysis, Atomic absorption spectrum, and X-ray photoelectron spectroscopy. The results showed that the PZS layers with thickness of about 25?nm were formed uniformly on CNT surfaces by polycondensation between hexachlorocyclotriphosphazene and 4,4-sulfonyldiphenol, and that high density of homogeneously dispersed spherical Au nanoparticles with average size of 6?nm was immobilized on their outer surface. Meanwhile, the catalytic activity and reusability of the Au@PZS@CNTs nanohybrids were investigated by employing the reduction of 4-nitrophenol into 4-aminophenol by NaBH4 as a model reaction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700