Formation mechanisms for the dominant kinks with different angles in InP nanowires
详细信息    查看全文
  • 作者:Minghuan Zhang (10) (11)
    Fengyun Wang (10)
    Chao Wang (10) (11)
    Yiqian Wang (10) (12)
    SenPo Yip (13)
    Johnny C Ho (13)

    10. The Cultivation Base for State Key Laboratory
    ; Qingdao University ; No. 308 ; Ningxia Road ; Qingdao ; 266071 ; People鈥檚 Republic of China
    11. College of Chemistry and Chemical Engineering
    ; Qingdao University ; No. 308 ; Ningxia Road ; Qingdao ; 266071 ; People鈥檚 Republic of China
    12. College of Physics Science
    ; Qingdao University ; No. 308 ; Ningxia Road ; Qingdao ; 266071 ; People鈥檚 Republic of China
    13. Department of Physics and Materials Science
    ; City University of Hong Kong ; 83 Tat Chee Avenue ; Kowloon ; Hong Kong
  • 关键词:InP nanowires ; Kinks ; Microstructures ; Formation mechanism ; HRTEM
  • 刊名:Nanoscale Research Letters
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:1
  • 全文大小:567 KB
  • 参考文献:1. Duan, X, Huang, Y, Cui, Y, Wang, J, Lieber, CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409: pp. 66-69 CrossRef
    2. Han, N, Wang, F, Hou, JJ, Yip, SP, Lin, H, Xiu, F, Fang, M, Yang, Z, Shi, X, Dong, G, Hung, TF, Ho, JC (2013) Tunable electronic transport properties of metal-cluster-decorated III-V nanowire transistors. Adv Mater 25: pp. 4445-4451 CrossRef
    3. Johansson, J, Karlsson, LS, Svensson, CP, Martensson, T, Wacaser, BA, Deppert, K, Samuelson, L, Seifert, W (2006) Structural properties of <111>鈥塀-oriented III-V nanowires. Nat Mater 5: pp. 574-580 CrossRef
    4. Caroff, P, Dick, KA, Johansson, J, Messing, ME, Deppert, K, Samuelson, L (2009) Controlled polytypic and twin-plane superlattices in III-V nanowires. Nat Nanotechnol 4: pp. 50-55 CrossRef
    5. Han, N, Hou, JJ, Wang, F, Yip, S, Yen, YT, Yang, ZX, Dong, G, Hung, T, Chueh, YL, Ho, JC (2013) GaAs nanowires: from manipulation of defect formation to controllable electronic transport properties. ACS Nano 7: pp. 9138-9146 CrossRef
    6. Hui, AT, Wang, F, Han, N, Yip, S, Xiu, F, Hou, JJ, Yen, YT, Hung, T, Chueh, YL, Ho, JC (2012) High-performance indium phosphide nanowires synthesized on amorphous substrates: from formation mechanism to optical and electrical transport measurements. J Mater Chem 22: pp. 10704 CrossRef
    7. Ikejiri, K, Kitauchi, Y, Tomioka, K, Motohisa, J, Fukui, T (2011) Zinc blende and wurtzite crystal phase mixing and transition in indium phosphide nanowires. Nano Lett 11: pp. 4314-4318 CrossRef
    8. Wang, J, Plissard, SR, Verheijen, MA, Feiner, LF, Cavalli, A, Bakkers, EP (2013) Reversible switching of InP nanowire growth direction by catalyst engineering. Nano Lett 13: pp. 3802-3806 CrossRef
    9. Dick, KA, Caroff, P, Bolinsson, J, Messing, ME, Johansson, J, Deppert, K, Wallenberg, LR, Samuelson, L (2010) Control of III鈥揤 nanowire crystal structure by growth parameter tuning. Semicond Sci Tech 25: pp. 024009 CrossRef
    10. Glas, F, Harmand, JC, Patriarche, G (2007) Why does wurtzite form in nanowires of III-V zinc blende semiconductors?. Phys Rev Lett 99: pp. 146101 CrossRef
    11. Kitauchi, Y, Kobayashi, Y, Tomioka, K, Hara, S, Hiruma, K, Fukui, T, Motohisa, J (2010) Structural transition in indium phosphide nanowires. Nano Lett 10: pp. 1699-1703 CrossRef
    12. Hou, JJ, Han, N, Wang, F, Xiu, F, Yip, S, Hui, AT, Hung, T, Ho, JC (2012) Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices. ACS Nano 6: pp. 3624-3630 CrossRef
    13. Han, N, Wang, F, Hui, AT, Hou, JJ, Shan, GC, Fei, X, Hung, TF, Ho, JC (2011) Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates. Nanotechnology 22: pp. 285607 CrossRef
    14. Tian, B, Xie, P, Kempa, TJ, Bell, DC, Lieber, CM (2009) Single-crystalline kinked semiconductor nanowire superstructures. Nat Nanotechnol 4: pp. 824-829 CrossRef
    15. Krishnamachari, U, Borgstrom, M, Ohlsson, BJ, Panev, N, Samuelson, L, Seifert, W, Larsson, MW, Wallenberg, LR (2004) Defect-free InP nanowires grown in [001] direction on InP (001). Appl Phys Lett 85: pp. 2077 CrossRef
    16. Wang, X, Ding, Y, Summers, CJ, Wang, ZL (2004) Large-scale synthesis of six-nanometer-wide ZnO nanobelts. J Phys Chem B 108: pp. 8773-8777 CrossRef
    17. Marks, L, Smith, DJ (1983) HREM and STEM of defects in multiply-twinned particles. J Microsc 130: pp. 249-261 CrossRef
    18. Hurle, D, Rudolph, P (2004) A brief history of defect formation, segregation, faceting, and twinning in melt-grown semiconductors. J Cryst Growth 264: pp. 550-564 CrossRef
    19. Korgel, BA (2006) Semiconductor nanowires: twins cause kinks. Nat Mater 5: pp. 521-522 CrossRef
    20. Algra, RE, Verheijen, MA, Borgstrom, MT, Feiner, LF, Immink, G, Van Enckevort, WJ, Vlieg, E, Bakkers, EP (2008) Twinning superlattices in indium phosphide nanowires. Nature 456: pp. 369-372 CrossRef
    21. Wang, C, Wei, Y, Jiang, H, Sun, S (2010) Bending nanowire growth in solution by mechanical disturbance. Nano Lett 10: pp. 2121-2125 CrossRef
    22. Cao, AJ, Wei, YG, Mao, SX (2007) Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Appl Phys Lett 90: pp. 151909 CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700