Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover
详细信息    查看全文
  • 作者:Irnayuli R. Sitepu (1) (2)
    Mingjie Jin (3)
    J. Enrique Fernandez (1)
    Leonardo da Costa Sousa (3)
    Venkatesh Balan (3)
    Kyria L. Boundy-Mills (1)
  • 关键词:Lignocellulosic ; Cryptococcus humicola ; Biodiesel ; Energy ; Oleochemics
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:98
  • 期:17
  • 页码:7645-7657
  • 全文大小:576 KB
  • 参考文献:1. Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biot 90(4):1219-227 CrossRef
    2. Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851-861 CrossRef
    3. Atabani A, Silitonga A, Badruddin I, Mahlia T, Masjuki H, Mekhilef S (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev 16:2070-093 CrossRef
    4. Balan V, Bals B, Chundawat SS, Marshall D, Dale B (2009) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels. Methods in Molecular Biology, vol 581. Humana Press, pp 61-77
    5. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall M-T, Hapala I, Papanikolaou S, Chardot T, Nicaud J-M (2008a) Control of lipid accumulation in the yeast / Yarrowia lipolytica. Appl Environ Microbiol 74(24):7779-789 CrossRef
    6. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008b) Control of lipid accumulation in the yeast / Yarrowia lipolytica. Appl Environ Microbiol 74(24):7779-789. doi:10.1128/AEM.01412-08 CrossRef
    7. Beopoulos A, Chardot T, Nicaud JM (2009) / Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91(6):692-96. doi:10.1016/j.biochi.2009.02.004 CrossRef
    8. Chen X, Li Z, Zhang X, Hu F, Ryu DD, Bao J (2009) Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol 159(3):591-04 CrossRef
    9. Chen X-f, Huang C, Xiong L, L-l M (2012) Microbial oil production from corncob acid hydrolysate by / Trichosporon cutaneum. Biotechnol Lett 34(6):1025-028 CrossRef
    10. Chundawat SPS, Vismeh R, Sharma LN, Humpula JF, da Costa Sousa L, Chambliss CK, Jones AD, Balan V, Dale BE (2010) Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresour Technol 101(21):8429-438. doi:10.1016/j.biortech.2010.06.027 CrossRef
    11. Cohen Z, Ratledge C (2005) Single Cell Oils. AOCS Press, Champaign
    12. Dekker RF (1989) Biodegradation of the hetero-1, 4-linked xylans. Plant cell wall polymers. American Chemical Society, Washington, pp 619-29 CrossRef
    13. Galafassi S, Cucchetti D, Pizza F, Franzosi G, Bianchi D, Compagno C (2012) Lipid production for second generation biodiesel by the oleaginous yeast / Rhodotorula graminis. Bioresour Technol 111:398-03 CrossRef
    14. Gao Q, Cui Z, Zhang J, Bao J (2014) Lipid fermentation of corncob residues hydrolysate by oleaginous yeast / Trichosporon cutaneum. Bioresour Technol 152:552-56
    15. Gong Z, Wang Q, Shen H, Hu C, Jin G, Zongbao K (2012) Co-fermentation of cellobiose and xylose by / Lipomyces starkeyi for lipid production. Bioresour Technol 117:20-4 CrossRef
    16. Huang C, Zong M-H, Wu H, Liu Q-P (2009) Microbial oil production from rice straw hydrolysate by / Trichosporon fermentans. Bioresour Technol 100(19):4535-538 CrossRef
    17. Huang C, Chen X-F, Xiong L, Chen X-D, Ma L-L (2012a) Oil production by the yeast / Trichosporon dermatis cultured in enzymatic hydrolysates of corncobs. Bioresource Technology 110(0):711-14 doi:10.1016/j.biortech.2012.01.077
    18. Huang C, Wu H, Li R-F, Zong M-H (2012b) Improving lipid production from bagasse hydrolysate with / Trichosporon fermentans by response surface methodology. New Biotechnol 29(3):372-78 CrossRef
    19. Huang C, Wu H, Liu Z, Cai J, Lou W-y, Zong M-h (2012c) Effect of organic acids on the growth and lipid accumulation of oleaginous yeast / Trichosporon fermentans. Biotechnol Biofuels 5(4)
    20. Huang C, Chen X-F, Xiong L, Chen X-D, Ma L-L, Chen Y (2013a) Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv 31:129-39 CrossRef
    21. Huang C, Chen X-F, Xiong L, Yang X-Y, Chen X-D, Ma L-L, Chen Y (2013b) Microbial oil production from corncob acid hydrolysate by oleaginous yeast / Trichosporon coremiiforme. Biomass Bioenergy 49:273-78 CrossRef
    22. Jin M, Gunawan C, Balan V, Dale BE (2012) Consolidated bioprocessing (CBP) of AFEX?pretreated corn stover for ethanol production using / Clostridium phytofermentans at a high solids loading. Biotechnol Bioeng 109(8):1929-936. doi:10.1002/bit.24458 CrossRef
    23. Lau MW, Dale BE (2009) Cellulosic ethanol production from AFEX-treated corn stover using / Saccharomyces cerevisiae 424A(LNH-ST). Proc Natl Acad Sci 106(5):1368-373. doi:10.1073/pnas.0812364106 CrossRef
    24. Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast / Rhodosporidium toruloides Y4 in fed-batch culture. Enzym Microb Technol 41(3):312-17. doi:10.1016/j.enzmictec.2007.02.008 CrossRef
    25. Li Q, Du W, Dehua L (2008a) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749-56 CrossRef
    26. Li Q, Du W, Liu D (2008b) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749-56 CrossRef
    27. Li B-Z, Balan V, Yuan Y-J, Dale BE (2010a) Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour Technol 101(4):1285-292 CrossRef
    28. Li M, Liu G-L, Chi Z, Chi Z-M (2010b) Single cell oil production from hydrolysate of cassava starch by marine-derived yeast / Rhodotorula mucilaginosa TJY15a. Biomass Bioenergy 34(1):101-07 CrossRef
    29. Liu W, Wang Y, Yu Z, Bao J (2012) Simultaneous saccharification and microbial lipid fermentation of corn stover by oleaginous yeast / Trichosporon cutaneum. Bioresour Technol 118:13-8 CrossRef
    30. Nicaud J-M, Chardot T, Beopoulos A (2010) New mutant yeast strains capable of accumulating a large of lipids. WO Patent 2,010,004,141
    31. Rodrigues F, Ludovico P, Le?o C (2006) Sugar metabolism in yeasts: an overview of aerobic and anaerobic glucose catabolism Biodiversity and ecophysiology of yeasts. Springer, pp 101-121
    32. Rossi M, Amaretti A, Raimondi S, Leonardi A (2011) Getting lipids for biodiesel production from oleaginous fungi. Biodiesel–feedstocks and processing technologies. InTech, Rijeka, pp 71-2
    33. Shi S, Valle-Rodriguez J, Siewers V, Nielsen J (2011) Prospects for microbial biodiesel production. Biotechol J 6:277-85 CrossRef
    34. Sitepu I, Ignatia L, Franz A, Wong D, Faulina S, Tsui M, Kanti A, Boundy-Mills K (2012) An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J Microbiol Methods 91(2):321-28 CrossRef
    35. Sitepu IR, Sestric R, Ignatia L, Levin D, Bruce German J, Gillies LA, Almada LA, Boundy-Mills KL (2013) Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species. Bioresour Technol 144:360-69 CrossRef
    36. Sitepu I, Selby T, Lin T, Zhu S, Boundy-Mills K (2014) Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species. J Ind Microbiol Biotechnol:1-10 doi:10.1007/s10295-014-1447-y
    37. Stanier R (1946) Some aspects of microbiological research in Germany BIOS Final Report No 691, Item No 24. British Intelligence Objectives Sub-Committee, London
    38. Thiru M, Sankh S, Rangaswamy V (2011) Process for biodiesel production from / Cryptococcus curvatus. Bioresour Technol 102:10436-0440 CrossRef
    39. Thomas KC, Hynes SH, Ingledew WM (2002) Influence of medium buffering capacity on inhibition of / Saccharomyces cerevisiae growth by acetic and lactic acids. Appl Environ Microbiol 68(4):1616-623. doi:10.1128/aem.68.4.1616-1623.2002 CrossRef
    40. Tsigie YA, Wang C-Y, Truong C-T, Ju Y-H (2011) Lipid production from / Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol 102(19):9216-222. doi:10.1016/j.biortech.2011.06.047 CrossRef
    41. Wang Q, Guo F-J, Rong Y-J, Chi Z-M (2012) Lipid production from hydrolysate of cassava starch by / Rhodosporidium toruloides 21167 for biodiesel making. Renewable Energy
    42. Wiebe MG, Koivuranta K, Penttil? M, Ruohonen L (2012) Lipid production in batch and fed-batch cultures of / Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnol 12(1):26 CrossRef
    43. Woodbine M (1959) Microbial fat: micro-organisms as potential fat producers progress in industrial microbiology. pp 179-245
    44. Yu X, Zheng Y, Dorgan K, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102:6134-140 CrossRef
    45. Zhao X, Kong X, Hua Y, Feng N, Zhao Z (2008) Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast / Lipomyces starkeyi. Eur J Lipid Sci Technol 110:405-12 CrossRef
    46. Zhu L, Zong M, Wu H (2008) Efficient lipid production with / Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99:7881-885 CrossRef
  • 作者单位:Irnayuli R. Sitepu (1) (2)
    Mingjie Jin (3)
    J. Enrique Fernandez (1)
    Leonardo da Costa Sousa (3)
    Venkatesh Balan (3)
    Kyria L. Boundy-Mills (1)

    1. Phaff Yeast Culture Collection, Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA, 95616, USA
    2. Forestry Research and Development Agency (FORDA), The Ministry of Forestry, Jalan Gunung Batu No. 5, Bogor, 16610, Indonesia
    3. Biomass Conversion Research Laboratory, Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, USA
  • ISSN:1432-0614
文摘
Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX?-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5?g/L lipids, out of a total of 36?g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40?% of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Preculturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700