Effects of ghrelin treatment on exertional dyspnea in COPD: an exploratory analysis
详细信息    查看全文
  • 作者:Keisuke Miki ; Ryoji Maekura ; Noritoshi Nagaya…
  • 关键词:Dyspnea ; Exercise ; Pulmonary rehabilitation ; Lactate threshold ; Underweight
  • 刊名:The Journal of Physiological Sciences
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:65
  • 期:3
  • 页码:277-284
  • 全文大小:548 KB
  • 参考文献:1.ATS (1999) Dyspnea. Mechanisms, assessment, and management: a consensus statement. American Thoracic Society. Am J Respir Crit Care Med 159:321-40View Article
    2.Burki NK, Lee LY (2010) Mechanisms of dyspnea. Chest 138:1196-201View Article PubMed Central PubMed
    3.O’Donnell DE, Ora J, Webb KA, Laveneziana P, Jensen D (2009) Mechanisms of activity-related dyspnea in pulmonary diseases. Respir Physiol Neurobiol 167:116-32View Article PubMed
    4.Gagnon P, Bussieres JS, Ribeiro F, Gagnon SL, Saey D, Gagne N, Provencher S, Maltais F (2012) Influences of spinal anesthesia on exercise tolerance in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 186:606-15View Article PubMed
    5.Landbo C, Prescott E, Lange P, Vestbo J, Almdal TP (1999) Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160:1856-861View Article PubMed
    6.Wagner PD (2008) Possible mechanisms underlying the development of cachexia in COPD. Eur Respir J 31:492-01View Article PubMed
    7.Laveneziana P, Guenette JA, Webb KA, O’Donnell DE (2012) New physiological insights into dyspnea and exercise intolerance in chronic obstructive pulmonary disease patients. Expert Rev Respir Med 6:651-62View Article PubMed
    8.O’Donnell DE, Bertley JC, Chau LK, Webb KA (1997) Qualitative aspects of exertional breathlessness in chronic airflow limitation: pathophysiologic mechanisms. Am J Respir Crit Care Med 155:109-15View Article PubMed
    9.O’Donnell DE, D’Arsigny C, Fitzpatrick M, Webb KA (2002) Exercise hypercapnia in advanced chronic obstructive pulmonary disease: the role of lung hyperinflation. Am J Respir Crit Care Med 166:663-68View Article PubMed
    10.Miki K, Maekura R, Hiraga T, Hashimoto H, Kitada S, Miki M, Yoshimura K, Tateishi Y, Fushitani K, Motone M (2009) Acidosis and raised norepinephrine levels are associated with exercise dyspnoea in idiopathic pulmonary fibrosis. Respirology 14:1020-026View Article PubMed
    11.Miki K, Maekura R, Hiraga T, Hashimoto H, Kitada S, Miki M, Yoshimura K, Tateishi Y, Sugano T, Motone M (2010) Exertional dyspnea-related acidotic and sympathetic responses in patients with sequelae of pulmonary tuberculosis. J Physiol Sci 60:187-93View Article PubMed
    12.Miki K, Maekura R, Hiraga T, Kitada S, Miki M, Yoshimura K, Tateishi Y (2012) Effects of oxygen on exertional dyspnoea and exercise performance in patients with chronic obstructive pulmonary disease. Respirology 17:149-54View Article PubMed
    13.Miki K, Maekura R, Miki M, Kitada S, Yoshimura K, Tateishi Y, Mori M (2013) Exertional acidotic responses in idiopathic pulmonary fibrosis: the mechanisms of exertional dyspnea. Respir Physiol Neurobiol 185:653-58View Article PubMed
    14.Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656-60View Article PubMed
    15.Matsumura K, Tsuchihashi T, Fujii K, Abe I, Iida M (2002) Central ghrelin modulates sympathetic activity in conscious rabbits. Hypertension 40:694-99View Article PubMed
    16.Nagaya N, Kojima M, Uematsu M, Yamagishi M, Hosoda H, Oya H, Hayashi Y, Kangawa K (2001) Hemodynamic and hormonal effects of human ghrelin in healthy volunteers. Am J Physiol Regul Integr Comp Physiol 280:R1483–R1487PubMed
    17.Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194-98View Article PubMed
    18.Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908-13View Article PubMed
    19.Nagaya N, Itoh T, Murakami S, Oya H, Uematsu M, Miyatake K, Kangawa K (2005) Treatment of cachexia with ghrelin in patients with COPD. Chest 128:1187-193View Article PubMed
    20.Miki K, Maekura R, Nagaya N, Nakazato M, Kimura H, Murakami S, Ohnishi S, Hiraga T, Miki M, Kitada S, Yoshimura K, Tateishi Y, Arimura Y, Matsumoto N, Yoshikawa M, Yamahara K, Kangawa K (2012) Ghrelin treatment of cachectic patients with chronic obstructive pulmonary disease: a multicenter, randomized, double-blind, placebo-controlled trial. PLoS ONE 7:e35708View Article PubMed Central PubMed
    21.Miki K, Maekura R, Nagaya N, Kitada S, Miki M, Yoshimura K, Tateishi Y, Motone M, Hiraga T, Mori M, Kangawa K (2013) Effects of Ghrelin Treatment on Exercise Capacity in Underweight COPD Patients: a substudy of a multicenter, randomized, double-blind, placebo-controlled trial of ghrelin treatment. BMC Pulm Med 13:37View Article PubMed Central PubMed
    22.Miki K, Maekura R, Nagaya N, Kitada S, Miki M, Yoshimura K, Matsui H, Satomi A, Hashimoto H, Mori M, Kangawa K (2013) Effects of ghrelin on the dyspnea pattern in cachectic COPD: Exploratory analysis of a substudy of a multicenter, randomized, double-blind, placebo-controlled trial of ghrelin treatment. Eur Respir J 42(57 suppl.):517s
    23.Itoh H, Taniguchi K, Koike A, Do
  • 作者单位:Keisuke Miki (1)
    Ryoji Maekura (1)
    Noritoshi Nagaya (2)
    Mari Miki (1)
    Seigo Kitada (1)
    Kenji Yoshimura (1)
    Masahide Mori (1)
    Kenji Kangawa (3)

    1. Department of Respiratory Medicine, National Hospital Organization Toneyama National Hospital, 5-1-1 Toneyama, Toyonaka, Osaka, 560-8552, Japan
    2. Department of Regenerative Medicine, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
    3. Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
  • 刊物主题:Human Physiology; Neurosciences; Animal Biochemistry; Animal Physiology; Cell Physiology; Neurobiology;
  • 出版者:Springer Japan
  • ISSN:1880-6562
文摘
A substudy of ghrelin treatment in a multicenter trial previously revealed that administration of ghrelin improves the exercise capacity of underweight COPD patients. To clarify exertional dyspnea more precisely, exploratory analysis was conducted on data from the substudy. Of 20 underweight COPD patients who were randomized to pulmonary rehabilitation with intravenous ghrelin (2 μg/kg, n?=?10) or placebo (n?=?10) twice daily for 3?weeks in the substudy, 16 (ghrelin?=?9, placebo?=?7) could be investigated for dyspnea break-point on the dyspnea-ratio (%) of Δoxygen uptake (\({\dot{V}}_{{\rm O}_{2}}\)) (= peak minus resting \({\dot{V}}_{{\rm O}_{2}}\)) curve. A significant treatment effect of ghrelin on percentage \({\dot{V}}_{{\rm O}_{2}}\) at the dyspnea break-point to Δ\({\dot{V}}_{{\rm O}_{2}}\) (p?=?0.049) was achieved. In conclusion, underweight COPD patients benefitted from ghrelin treatment in terms of shifts to the early exercise phase of the dyspnea break-point during a standardized exercise program.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700