A Review on Miscanthus Biomass Production and Composition for Bioenergy Use: Genotypic and Environmental Variability and Implications for Breeding
详细信息    查看全文
  • 作者:Stéphanie Arnoult ; Maryse Brancourt-Hulmel
  • 关键词:Miscanthus ; Phenotypic and genotypic variability ; Biomass production ; Biomass composition ; Breeding ; Bioenergy use
  • 刊名:BioEnergy Research
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:8
  • 期:2
  • 页码:502-526
  • 全文大小:2,669 KB
  • 参考文献:1.Greenpeace (2013) Scénario de transition énergétique, 27 p
    2.Eurelectric (2011) Power choices pathways to carbon-neutral electricity in Europe by 2050, Full Report, Union of the Electricity Industry, 100 p
    3.EREC (2010) RE-thinking 2050, a 100?% renewable energy vision for the European Union, 76 p
    4.ECF (2010) Roadmap 2050: a practical guide to a prosperous, low-carbon Europe, Technical Analysis, 100 p
    5.IEA/OECD (2006) Perspectives des Technologies de l’Energie, Scénarios et Stratégies à l’horizon 2050, Synthèse et Implications Stratégiques. International Energy Agency (IEA), 15 p
    6.Cadoux S, Ferchaud F, Demay C, Boizard H, Machet J-M, Fourdinier E, Preudhomme M, Chabbert B, Gosse G, Mary B (2014) Implications of productivity and nutrient requirements on greenhouse gas balance of annual and perennial bioenergy crops. GCB Bioenergy 6:425-38View Article
    7.Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:15-2View Article PubMed
    8.Sanderson MA, Adler PR (2008) Perennial forages as second generation bioenergy crops. Int J Mol Sci 9:768-88View Article PubMed Central PubMed
    9.Zegada-Lizarazu W, Parrish D, Berti M, Monti A (2013) Dedicated crops for advanced biofuels: consistent and diverging agronomic points of view between the USA and the EU-27. Biofuels Bioprod Biorefin 7:715-31View Article
    10.Rabelo SC, Carrere H, Filho RM, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102:7887-895View Article PubMed
    11.Dillen SY, Djomo SN, Al Afas N, Vanbeveren S, Ceulemans R (2013) Biomass yield and energy balance of a short-rotation poplar coppice with multiple clones on degraded land during 16?years. Biomass Bioenergy 56:157-65View Article
    12.Nissim WG, Pitre FE, Teodorescu TI, Labrecque M (2013) Long-term biomass productivity of willow bioenergy plantations maintained in southern Quebec, Canada. Biomass Bioenergy 56:361-69View Article
    13.Vermerris W (2011) Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane free access. J Integr Plant Biol 53:105-19View Article PubMed
    14.Souza A, Grandis A, Leite DC, Buckeridge M (2014) Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenergy Res 7:24-5View Article
    15.Hastings A, Clifton-Brown J, Wattenbach M, Stampfl P, Mitchell CP, Smith P (2008) Potential of Miscanthus grasses to provide energy and hence reduce greenhouse gas emissions. Agron Sustain Dev 28:465-72View Article
    16.Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14:2000-014View Article
    17.Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does miscanthus do it? Plant Physiol 150:2104-115View Article PubMed Central PubMed
    18.Wagoner P (1990) Perennial grain development - past efforts and potential for the future. Crit Rev Plant Sci 9:381-08View Article
    19.Arundale RA, Dohleman FG, Heaton EA, McGrath JM, Voigt TB, Long SP (2014) Yields of Miscanthus × giganteus and Panicum virgatum decline with stand age in the Midwestern USA. Glob Chang Biol Bioenergy 6:1-3View Article
    20.Dohleman FG, Heaton EA, Leakey ADB, Long SP (2009) Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant Cell Environ 32:1525-537View Article PubMed
    21.Cadoux S, Ferchaud F, Preudhomme M, Demay C, Fourdinier E, Strullu L, Mary B, Machet JM, Boizard H, Gosse G (2010) Production de biomasse et impacts environnementaux des cultures énergétiques, Colloque final du programme REGIX, 3- mai 2010, Lyon, France, pp 27-9
    22.Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Chang Biol 10:509-18View Article
    23.Lewandowski I, Schmidt U (2006) Nitrogen, energy and land use efficiencies of Miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric Ecosyst Environ 112:335-46View Article
    24.Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002) The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89:279-86View Article PubMed
    25.Zub HW, Arnoult S, Younous J, Lejeune-Hénaut I, Brancourt-Hulmel M (2012) The frost tolerance of Miscanthus at the juvenile stage: differences between clones are influenced by leaf-stage and acclimation. Eur J Agron 36:32-0View Article
    26.Cosentino SL, Patane C, Sanzone E, Copani V, Foti S (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu. in a Mediterranean environment. Ind Crop Prod 25:75-8Vi
  • 作者单位:Stéphanie Arnoult (1) (2)
    Maryse Brancourt-Hulmel (3)

    1. INRA, UMR1281 SADV, 2 Chaussée Brunehaut, Estrées-Mons, BP 50136, 80203, Péronne Cedex, France
    2. INRA, UE0972 GCIE Picardie, 2 Chaussée Brunehaut, Estrées-Mons, BP 50136, 80203, Péronne Cedex, France
    3. INRA, UR1158 AgroImpact, Site d’Estrées-Mons, 2 Chaussée Brunehaut, Estrées-Mons, BP 50136, 80203, Péronne Cedex, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Biochemical Engineering
    Bioorganic Chemistry
  • 出版者:Springer New York
  • ISSN:1939-1242
文摘
The lignocellulosic C4 perennial crop miscanthus and, more particularly, one of its species, Miscanthus × giganteus, are especially interesting for bioenergy production because they combine high biomass production with a low environmental impact. However, few varieties are available, which is risky due to disease susceptibility. Gathering worldwide references, this review shows a high genotypic and environmental variability for traits of interest related to miscanthus biomass production and composition, which may be useful in breeding programs for enhancing the availability of suitable clones for bioenergy production. The M. × giganteus species and certain clones in the Miscanthus sinensis species seem particularly interesting due to high biomass production per hectare. Although the industrial requirements for biomass composition have not been fully defined for the different bioenergy conversion processes, the M. × giganteus and Miscanthus sacchariflorus species, which show high lignin contents, appear more suitable for thermochemical conversion processes. In contrast, the M. sinensis species and certain M. × giganteus clones with low lignin contents were interesting for biochemical conversion processes. The M. sacchariflorus species is also interesting as a progenitor for breeding programs, due to its low ash content, which is suitable for the different bioenergy conversion processes. Moreover, mature miscanthus crops harvested in winter seem preferred by industry to enhance efficiency and reduce the expense of the processes. This investigation on miscanthus can be extrapolated to other monocotyledons and perennial crops, which may be proposed as feedstocks in addition to miscanthus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700