Bioenergy Crops and Natural Enemies: Host Plant-Mediated Effects of Miscanthus on the Aphid Parasitoid Lysiphlebus testaceipes
详细信息    查看全文
  • 作者:G. Doury ; J. Pottier ; A. Ameline ; A. Mennerat ; F. Dubois ; C. Rambaud…
  • 关键词:Biofuel crop ; Miscanthus spp ; Host plant resistance ; Tritrophic interactions ; Rhopalosiphum maidis ; Lysiphlebus testaceipes
  • 刊名:BioEnergy Research
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:8
  • 期:3
  • 页码:1275-1283
  • 全文大小:435 KB
  • 参考文献:1.Bonnin C, Lal R (2012) Agronomic and ecological implications of biofuels. In: Sparks DL (ed) Advances in agronomy. Elsevier pp 1-50. doi:10.-016/?B978-0-12-394278-4.-0001-5
    2.Landis DA, Gardiner MM, Van Der Werf W, Swinton SM (2008) Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. Proc Natl Acad Sci U S A 105:20552-0557PubMed Central CrossRef PubMed
    3.Thomson LJ, Hoffmann AA (2011) Pest management challenges for biofuel crop production. Curr Opin Environ Sustain 3:95-9. doi:10.-016/?j.?cosust.-010.-1.-0.- CrossRef
    4.Cook JH, Beyea J, Keeler KH (1991) Potential impacts of biomass production in the United States on biological diversity. Annu Rev Energ Environ 16:401-31CrossRef
    5.Naylor RL, Liska AJ, Burke MB, Falcon WP, Gaskell JC, Rozelle SD, Cassman K (2007) The ripple effect: biofuels, food security, and the environment. Environment 49:30-3CrossRef
    6.Tilman D, Socolow R, Foley JA et al (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270-71CrossRef PubMed
    7.Danielsen F, Beukema H, Burgess ND et al (2009) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23:348-58CrossRef PubMed
    8.Fletcher RJ Jr, Robertson BA, Evans J, Doran PJ, Alavalapati JRR, Schemske DW (2011) Biodiversity conservation in the era of biofuels: risks and opportunities. Front Ecol Environ 9:161-68CrossRef
    9.Landis DA, Wherling BP (2010) Arthropods and biofuel production systems in North America. Insect Sci 17:220-36. doi:10.-111/?j.-744-7917.-009.-1310.?x CrossRef
    10.Frank SD, Shrewsbury PM, Esiekpe O (2008) Spatial and temporal variation in natural enemy assemblages on Maryland native plant species. Environ Entomol 37:478-86CrossRef PubMed
    11.Carmona DM, Menalled FD, Landis DA (1999) Gryllus pennsylvanicus (Orthoptera: Gryllidae): laboratory weed seed predation and within field activity-density. J Econ Entomol 92:825-29CrossRef
    12.Menalled FD, Lee JC, Landis DA (2001) Herbaceous filter strips in agroecosystems: implications for ground beetle (Coleoptera: Carabidae) conservation and invertebrate weed seed predation. Great Lakes Entomol 34:77-1
    13.Gardiner MM, Tuell JK, Isaacs R, Gibbs J, Ascher JS, Landis DA (2010) Implications of three model biofuel crops for beneficial arthropods in agricultural landscapes. Bioenerg Res 3:6-9. doi:10.-007/?s12155-009-9065-7 CrossRef
    14.Jakob K, Zhou F, Paterson AH (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell Dev Biol Plant 45:291-05CrossRef
    15.Zub HW, Arnoult S, Brancourt-Hulmel M (2011) Key traits for biomass production identified in different Miscanthus species at two harvest dates. Biomass Bioenerg 35:637-51. doi:10.-016/?j.?biombioe.-010.-0.-20 CrossRef
    16.Lewandowski I, Clifton-Brown JC, Scurlockc JMO, Huismand W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenerg 19:209-27CrossRef
    17.Prasifka JR, Bradshaw JD, Meagher RL, Nagoshi RN, Steffey KL, Gray ME (2009) Development and feeding of fall armyworm on Miscanthus × giganteus and switchgrass. J Econ Entomol 102:2154-159CrossRef PubMed
    18.Spencer JL, Raghu S (2009) Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize. PLoS ONE 4:e8336. doi:10.-371/?journal.?pone.-008336 PubMed Central CrossRef PubMed
    19.Gloyna K, Thieme T, Zellner M (2011) Miscanthus, a host for larvae of a European population of Diabrotica v. virgifera. J. Appl Entomol 135:780-85. doi:10.-111/?j.-439-0418.-010.-1599.?x CrossRef
    20.Bradshaw JD, Prasifka JR, Steffey KL, Gray ME (2010) First report of field populations of two potential aphid pests of the bioenergy crop Miscanthus x giganteus. Fla Entomol 93:135-37. doi:10.-653/-24.-93.-123 CrossRef
    21.Semere T, Slater FM (2007) Invertebrate populations in miscanthus (Miscanthus x giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenerg 31:30-9. doi:10.-016/?j.?biombioe.-006.-7.-02 CrossRef
    22.Stanley DA, Stout JC (2013) Quantifying the impacts of bioenergy crops on pollinating insect abundance and diversity: a field-scale evaluation reveals taxon-specific responses. J Appl Ecol 50:335-44. doi:10.-111/-365-2664.-2060 CrossRef
    23.Takahashi K (1997) Use of Coccinella septempunctata brucki Mulsant as a biological agent for controlling alfalfa aphids. Jpn Agric Res Q 31:101-08
    24.Gordon R, Davidson J (2008) A new prey record and range extension for Hyperaspis paludicola Schwarz and a new prey record for Microwesia misella (LeConte) (Coleoptera: Coccinellidae). Insect Mundi 43:1-
    25.Gottwald R, Adam L (1998) Ergebnisse zu entomologischen erhebungen und zur unkrautbek?mpfung bei miscanthus und anderen c4‐pflanzen. Arch Phytopathol Plant Protect 31:377-86. doi:10.-080/-323540980938324- CrossRef
    26.Thomas M, Wa
  • 作者单位:G. Doury (1)
    J. Pottier (1)
    A. Ameline (1)
    A. Mennerat (1) (3)
    F. Dubois (1)
    C. Rambaud (2)
    A. Couty (1)

    1. EDYSAN Ecologie et Dynamique des Systèmes Anthropisés FRE 3498, CNRS-UPJV, 1 rue des Louvels, 80037, Amiens Cedex 1, France
    3. Department of Biology, University of Bergen, Postbox 7803, 5020, Bergen, Norway
    2. UMR INRA 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, Université Lille Nord de France, Lille 1, Batiment SN2, 59650, Villeneuve d’Ascq Cedex, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Biochemical Engineering
    Bioorganic Chemistry
  • 出版者:Springer New York
  • ISSN:1939-1242
文摘
Miscanthus spp. are biofuel crops that are triggering growing interest worldwide due to their numerous agronomic advantages. Though breeding programs take into account usual key plant traits of agronomic interest (e.g., biomass production, adaptation to broader climatic range), they generally overlook plant attributes relating to pest and pathogen resistance and even more those that may favor or improve the combined use of biological control agents of pests. A recent study showed that the parental species, Miscanthus sacchariflorus and, to a lesser extent, Miscanthus sinensis, were less suitable and acceptable host plants for the corn leaf aphid Rhopalosiphum maidis, one of the main pests of Miscanthus × giganteus in the USA, than the hybrid M. × giganteus. In the present laboratory study, we investigated the host plant-mediated effects of these three miscanthus species on various life history traits of the aphid parasitoid Lysiphlebus testaceipes. A clear host plant effect was shown on aphid size and, consequently, on parasitoid fitness parameters. High plant resistance to aphids was shown to be more detrimental to the parasitoid than partial resistance, with M. sacchariflorus being the least suitable host plant to both aphid and parasitoid development. Selection of partial resistance, such as the one exhibited by M. sinensis, should then be preferred to support efficient aphid regulation by parasitoids. This study provides the first contribution to the evaluation of bottom-up effects of a biofuel crop on beneficial insects. It also underlines the need to conduct additional research when considering the implementation of new biomass crops. Keywords Biofuel crop Miscanthus spp Host plant resistance Tritrophic interactions Rhopalosiphum maidis Lysiphlebus testaceipes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700