Modulation polarimetry of thermoelasticity induced by thermal radiation in a glass
详细信息    查看全文
  • 作者:I. E. Matyash (1)
    I. A. Minailova (1)
    O. N. Mishchuk (1)
    B. K. Serdega (1)
  • 刊名:Physics of the Solid State
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:56
  • 期:7
  • 页码:1494-1500
  • 全文大小:308 KB
  • 参考文献:1. E. G. Malyavina, / Heat Loss of the Building: A Reference Book (Avaks-Press, Moscow, 2007) [in Russian].
    2. M. A. Arguchintseva and N. N. Pilyugin, Prikl. Mekh. Tekh. Fiz. ng class="a-plus-plus">43ng>(5), 55 (2002).
    3. N. N. Rykalin, A. A. Uglov, and A. N. Kokora, / Laser Machining and Welding (Mashinostroenie, Moscow, 1975; Mir, Moscow, 1978).
    4. N. V. Vovnenko, B. A. Zimin, and Yu. V. Sud鈥檈nkov, Tech. Phys. ng class="a-plus-plus">56ng>(7), 968 (2011). nal" href="http://dx.doi.org/10.1134/S1063784211070255" target="_blank" title="It opens in new window">CrossRef
    5. T. Q. Qiu and C. L. Tien, Int. J. Heat Mass Transfer ng class="a-plus-plus">37ng>(17), 2789 (1994). nal" href="http://dx.doi.org/10.1016/0017-9310(94)90396-4" target="_blank" title="It opens in new window">CrossRef
    6. A. I. Gubin and Yu. A. Malaya, Tekh. Teplofiz. Prom. Teploenerg., No. 3, 72 (2011).
    7. O. R. Gachkevich, R. F. Terlets鈥檏ii, and M. B. Brukhal鈥? Mat. Metodi Fiz.-Mekh. Polya ng class="a-plus-plus">51ng>(3), 202 (2008).
    8. K. L. Muratikov, Tech. Phys. ng class="a-plus-plus">69ng>(7), 792 (1999). nal" href="http://dx.doi.org/10.1134/1.1259349" target="_blank" title="It opens in new window">CrossRef
    9. M. Svanadze, Tech. Mech. ng class="a-plus-plus">32ng>(2鈥?), 564 (2012).
    10. A. L. Burka and P. M. Likhanskii, Prikl. Mekh. Tekh. Fiz. ng class="a-plus-plus">42ng>(3), 101 (2001).
    11. R. F. Terletskii and O. P. Turii, Mat. Metody. Fiz.-Mekh. Polya ng class="a-plus-plus">49ng>(3), 177 (2006).
    12. A. Ya. Aleksandrov and M. Kh. Akhmetdzyanov, / Polarization Optical Methods of the Mechanics of a Deformed Body (Nauka, Moscow, 1973) [in Russian].
    13. S. N. Jasperson and S. E. Sahnatterly, Rev. Sci. Instrum. ng class="a-plus-plus">40ng>(6), 761 (1969). nal" href="http://dx.doi.org/10.1063/1.1684062" target="_blank" title="It opens in new window">CrossRef
    14. E. V. Nikitenko and B. K. Serdega, in / Optoelectronics and Semiconductor Technology (Naukova Dumka, Kiev, 1998), Vol. 33, p. 102 [in Russian].
    15. K. G. Gusev, A. D. Filatov, and A. P. Sopolev, / Polarization Modulation (Sovetskoe Radio, Moscow, 1974) [in Russian].
    16. A. Gerard and J. M. Burch, / Introduction to Matrix Methods in Optics (Wiley, London, 1975).
    17. Ya. A. Fofanov, I. V. Pleshakov, and I. M. Sokolov, Nauchn. Priborostr. ng class="a-plus-plus">20ng>(2), 3 (2010).
    18. A. D. Kovalenko, / Introduction to Thermoelasticity (Naukova Dumka, Kiev, 1965) [in Russian].
    19. I. E. Matyash, I. A. Minailova, O. H. Mishchuk, and B. K. Serdega, Phys. Solid State ng class="a-plus-plus">55ng>(5), 1087 (2013). nal" href="http://dx.doi.org/10.1134/S1063783413050235" target="_blank" title="It opens in new window">CrossRef
  • 作者单位:I. E. Matyash (1)
    I. A. Minailova (1)
    O. N. Mishchuk (1)
    B. K. Serdega (1)

    1. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, pr. Nauki 41, Kyiv, 03028, Ukraine
  • ISSN:1090-6460
文摘
The phenomenon of thermoelasticity induced by an external thermal radiation in a model glass sample was investigated experimentally. The thermoelasticity was detected by the optical polarization method used in studies of the photoelastic effect and modified by the probe radiation polarization modulation technique. This technique made it possible to increase the sensitivity of the measurement system to the strain state of a solid so that it became possible to detect thermoelasticity under conditions where the temperature gradient across the sample reaches a few fractions of a degree. The spatial and temporal changes of the mechanical stresses induced in the sample by a nonuniform radiation heating and, consequently, by a heat flux were measured. The coordinate functions of temperature as solutions of the inverse problem of thermoelasticity were obtained using the graphical integration of the experimental characteristics. The characteristic parameters of some of the heat transfer mechanisms were determined by analyzing the experimental characteristics of the kinetics and dynamics of mechanical stresses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700