in vivo relationship is established and clinically relevant sizes are known, an AIM–pHRT could serve as a quick indicator that clinically relevant fractions have not changed and also, in the management of post-approval changes." />
Product Lifecycle Approach to Cascade Impaction Measurements
详细信息    查看全文
  • 作者:Terrence P. Tougas (1)
    Dave Christopher (2)
    Jolyon Mitchell (3)
    Svetlana Lyapustina (4)
    Michiel Van Oort (5)
    Richard Bauer (6)
    Volker Glaab (7)
  • 关键词:abbreviated impactor measurement (AIM) ; Andersen cascade impactor (ACI) ; inhaler ; lifecycle ; quality control (QC)
  • 刊名:AAPS PharmSciTech
  • 出版年:2011
  • 出版时间:March 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 页码:312-322
  • 全文大小:312KB
  • 参考文献:1. European Directorate for Quality in Medicines (EDQM). European pharmacopeia 6.8, monograph 2.9.18. Preparations for inhalations: Aerodynamic assessment of fine particles. Strasburg, EDQM 2010.
    2. US Pharmacopeial Convention. United States Pharmacopeia 33/National Formulary 28, Chapter <601> Aerosols, nasal sprays, metered-dose inhalers, and dry powder inhalers. Rockville, MD, 2010.
    3. Christopher D, Curry P, Doub W, Furnkranz K, Lavery M, Lin K, / et al. Considerations for the development and practice of cascade impaction testing including a mass balance failure investigation tree. J Aerosol Med. 2003;16(3):235-7. doi:pan class="a-plus-plus non-url-ref">10.1089/089426803769017604 . p://dx.doi.org/10.1089/089426803769017604">CrossRef
    4. Tougas TP, Christopher D, Mitchell JP, Strickland H, Wyka B, Van Oort M, / et al. Improved quality control metrics for cascade impaction measurements of orally inhaled drug products (OIPs). AAPS PharmSciTech. 2009;10(4):1276-5. doi:pan class="a-plus-plus non-url-ref">10.1208/s12249-009-9312-4 . p://dx.doi.org/10.1208/s12249-009-9312-4">CrossRef
    5. Mitchell JP, Morton RW, Nagel MW. The influence of body geometry on spacer performance: a case study. In: Dalby RN, Byron PR, Farr SJ, Peart J, editors. Respiratory drug delivery-VII. Raleigh, North Carolina, USA: Serentec Press; 2000. p. 539-1.
    6. Schultz A, Le Soeuf T, Looi K, Zhang G, Le Soeuf P, Devadason SG. Validation of methodology for recording breathing and simulating drug delivery through spacers and valved holding chambers. J Aerosol Med Pulmon Deliv., 2010;23: online in advance of publication.
    7. Tougas T, Christopher D, Lyapustina S, Mitchell JP, Patel R. Capabilities of aerodynamic particle size distribution (APSD) measurements based on analysis of a blinded database. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM, editors. Respiratory drug delivery 2008. Illinois, USA: Davis Healthcare International Publishing LLC, River Grove; 2008. p. 109-3.
    8. International Organization for Standardization, Geneva, Switzerland. Aerosol drug delivery device design verification - Requirements and test methods. ISO 20072:2009.
    9. Tougas T, Christopher JD, Mitchell JP, Lyapustina S. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM, editors. Efficient data analysis and abbreviated impactor measurement concepts, respiratory drug delivery 2010. Illinois, USA: Davis Healthcare International Publishing LLC, River Grove; 2010. p. 599-03.
    10. Mitchell JP, Nagel MW, Copley M. The abbreviated impactor measurement concept: a potentially faster and more precise way to assess quality of inhaled drug products. Inhalation. 2009;3(3):26-0.
    11. Mitchell JP, Nagel MW, Avvakoumova V, MacKay H, Ali R. The abbreviated impactor measurement (AIM) concept: part 1—Influence of particle bounce and re-entrainment—evaluation with a “dry-pressurized metered dose inhaler (pMDI)-based formulation. AAPS PharmSciTech. 2009;10(1):243-1. doi:pan class="a-plus-plus non-url-ref">10.1208/s12249-009-9202-9 . p://dx.doi.org/10.1208/s12249-009-9202-9">CrossRef
    12. Rudolph G, Kobrich R, Stahlhofen W. Modeling and algebraic formulation of regional aerosol deposition in man. J Aerosol Sci. 1990;21(S1):306-06.
    13. Usmani OS, Biddiscombe MF, Nightingale JA, Underwood SR, Barnes PJ. Effects of bronchodilator particle size in asthmatic patients using monodisperse aerosols. J Appl Physiol. 2003;95:2106-2.
    14. Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of beta-2 agonist particle size. Am J Respir Crit Care Med. 2005;172:1497-04. p://dx.doi.org/10.1164/rccm.200410-1414OC">CrossRef
    15. European Medicines Agency (EMEA). Guideline on the pharmaceutical quality of inhalation and nasal products. EMEA/CHMP/QWP/49313/2005 Corr. 2006.
    16. Newman SP, Chan H-K. / In vitro/in vivo comparisons in pulmonary drug delivery. J Aerosol Med Pulmon Deliv. 2008;21(1):1-. p://dx.doi.org/10.1089/jamp.2007.0657">CrossRef
    17. Olsson B, Berg E, Svensson M. Comparing aerosol size distributions that penetrate mouth–throat models under realistic inhalation conditions. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM, editors. Respiratory drug delivery 2010. Illinois, USA: Davis Healthcare International Publishing LLC, River Grove; 2010. p. 225-4.
    18. Byron P, Delvadia RR, Worth Longest P, Hindle M. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM, editors. Respiratory drug delivery 2010. Illinois, USA: Davis Healthcare International Publishing LLC, River Grove; 2010. p. 215-4.
    19. Grgic B, Finlay WH, Heenan AF. Regional aerosol deposition and flow measurements in an idealized mouth and throat. J Aerosol Sci. 2004;35(1):21-2. p://dx.doi.org/10.1016/S0021-8502(03)00387-2">CrossRef
    20. Mitchell JP, Nagel MW, Doyle CC, Ali RS, Avvakoumova VI, Christopher JD, / et al. Relative precision of inhaler aerodynamic particle size distribution (APSD) metrics by full resolution and abbreviated Andersen cascade impactors (ACIs): part 1. AAPS PharmSciTech. 2010;11(2):843-1. doi:pan class="a-plus-plus non-url-ref">10.1208/s12249-010-9452-6 . p://dx.doi.org/10.1208/s12249-010-9452-6">CrossRef
    21. Mitchell JP, Nagel MW, Avvakoumova V, MacKay H, Ali R. The abbreviated impactor measurement (AIM) concept: part 2—Influence of evaporation of a volatile component—evaluation with a “droplet producing-pressurized metered dose inhaler (pMDI)-based formulation containing ethanol as co-solvent. AAPS PharmSciTech. 2009;10(1):252-. doi:pan class="a-plus-plus non-url-ref">10.1208/s12249-009-9201-x . p://dx.doi.org/10.1208/s12249-009-9201-x">CrossRef
    22. Stobbs B, McAulay E, Bogard H, Monsallier E. Evaluation of the fast-screening impactor for determining fine particle fraction of dry powder inhalers, drug delivery to the lungs-20. UK: Edinburgh; 2009. p. 158-1.
    23. Copley M, Mitchell J, McAulay E, Russell-Graham D. Implementing the AIM concept, Inhalation, 2010;4 (1).
    24. Sheng G, Zhang J, Simmons R, Watanabe W. Fast screening impactor (FSI) as a prescreening tool for MDIs and nebulizers. RDD. 2010;637-640.
    25. Dunbar C, Mitchell JP. Analysis of cascade impactor mass distributions. J Aerosol Med. 2005;18(4):439-1. p://dx.doi.org/10.1089/jam.2005.18.439">CrossRef
    26. Mitchell JP, Nagel MW, Doyle CC, Ali RS, Avvakoumova VI, Christopher JD, Quiroz J, Strickland H, Tougas T, Lyapustina S. Relative precision of inhaler aerodynamic particle size distribution (APSD) metrics by full resolution and abbreviated Andersen cascade impactors (ACIs). Part 2—Investigation of Bias in Extra-fine Mass Fraction with AIM-HRT Impactor. Accepted to AAPS PharmSciTech. 2010.
    27. PharmEur 2.9.18 - details to come.
    28. Hallworth GW, Westmoreland DG. The twin impinger: a simple device for assessing the delivery of drugs from metered dose pressurized aerosol inhalers. J Pharm Pharmacol. 1987;39:966-2.
    29. Mitchell JP, Nagel MW. Cascade impactors for the size characterization of aerosols from medical inhalers: their uses and limitations. J Aerosol Med. 2003;16(4):341-7. p://dx.doi.org/10.1089/089426803772455622">CrossRef
    30. Leach C. Enhancing drug delivery through reformulating MDIs with HFA propellants—drug deposition and its effect on preclinical programs. In: Dalby RN, Byron PR, Farr SJ, editors. Respiratory drug delivery V. Buffalo Grove: IL. InterpharmPress; 1996. p. 133-4.
    31. Dolovich MB, Mitchell JP. Canadian standards association (CSA) standard Z264.1-02: a new voluntary standard for spacers and holding chambers used with pressurized metered-dose inhalers (pMDIs). Can Respir J. 2004;11(7):489-5.
    32. Mitchell JP, Nagel MW, MacKay H, Avvakoumova VA, Malpass J. Developing a “universal-valved holding chamber (VHC) platform with added patient benefits whilst maintaining consistent / in vitro performance. In: Dalby RN, Byron PR, Peart J, Suman JD, Young PM, editors. Respiratory drug delivery—Europe. Illinois, USA: Davis Healthcare International Publishing LLC, River Grove; 2009. p. 383-.
    33. Newman SP, Chan HK. / In vitro/ / in vivo comparisons in pulmonary drug delivery. J Aerosol Med Pulm Drug Deliv. 2008;21(1):77-4. doi:pan class="a-plus-plus non-url-ref">10.1089/jamp.2007.0643 . p://dx.doi.org/10.1089/jamp.2007.0643">CrossRef
    34. American Thoracic Society. Standardization of spirometry, 1994 update. Am J Respir Crit Care Med. 1995;152:1107-6.
    35. Hinds WC. Properties, behavior, and measurement of airborne particles. 2nd ed. N.Y., USA: Wiley-Interscience; 1999. p. 75-10.
    36. Leach C. Enhanced drug delivery through reformulating MDIs with HFA propellants—drug deposition and its effect on preclinical programs. RDD. 1996;133-44.
    37. Gonda I. Aerosols for delivery of therapeutic and diagnostic agents to the respiratory tract, In: Critical reviews in therapeutic drug carrier systems, 1990;273-313.
    38. Vincent JH. The inhalation of aerosols. In: Aerosol science for industrial hygienists, New York, Pergamon, 1995, pp 136-55.
    39. Lundgren DA, Hlaing DN, Rich TA, Marple VA. PM10/PM2:5/PM1 data from a trichotomous sampler. Aerosol Sci Technol. 1996;25:353-. p://dx.doi.org/10.1080/02786829608965401">CrossRef
    40. Zhang Y, Finlay WH, Matida EA. Particle deposition measurements and numerical simulation in a highly idealized mouth–throat. J Aerosol Sci. 2004;35(7):789-03. doi:pan class="a-plus-plus non-url-ref">10.1016/j.jaerosci.2003.12.006 . p://dx.doi.org/10.1016/j.jaerosci.2003.12.006">CrossRef
    41. Daley-Yates PT, Parkins DA, Thomas MJ, Gillett B, House KW, Ortega HG. Pharmacokinetic, pharmacodynamic, efficacy, and safety data from two randomized, double-blind studies in patients with asthma and an / in vitro study comparing two dry-powder inhalers delivering a combination of salmeterol 50?μg and fluticasone propionate 250?μg: Implications for establishing bioequivalence of inhaled products. Clin Thera. 2009;31(2):370-5. doi:pan class="a-plus-plus non-url-ref">10.1016/j.clinthera.2009.02.007 . p://dx.doi.org/10.1016/j.clinthera.2009.02.007">CrossRef
    42. Grgic B, Finlay WH, Burnell PKP, Heenan AF. / In vitro intersubject and intrasubject deposition measurements in realistic mouth-throat geometries. J Aerosol Sci. 2004;35:1025-0. p://dx.doi.org/10.1016/j.jaerosci.2004.03.003">CrossRef
    43. Borgstr?m L, Olsson B, Thorsson L. Degree of throat deposition can explain the variability in lung deposition of inhaled drugs. J Aer Medicine. 2006;19(4):473-3. p://dx.doi.org/10.1089/jam.2006.19.473">CrossRef
  • 作者单位:Terrence P. Tougas (1)
    Dave Christopher (2)
    Jolyon Mitchell (3)
    Svetlana Lyapustina (4)
    Michiel Van Oort (5)
    Richard Bauer (6)
    Volker Glaab (7)

    1. Analytical Development, Boehringer Ingelheim, Ridgefield, Connecticut, USA
    2. Statistics, Merck, Kenilworth, New Jersey, USA
    3. Trudell Medical International, London, Ontario, Canada
    4. Pharmaceutical Practice Group, Drinker Biddle and Reath LLP, 1500 K Street NW, Washington, District of Columbia, 20005-1209, USA
    5. Inhaled Product Development, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
    6. Aerosol Analysis, MannKind Corp, Danbury, Connecticut, USA
    7. Respiratory Drug Delivery, Boehringer Ingelheim, Ingelheim am Rhein, Germany
文摘
Over the lifecycle of an orally inhaled product (OIP), multi-stage cascade impactor (CI) measurements are used for different purposes and to address different questions. Full-resolution CIs can provide important information during product development and are widely used but are time- and resource-intensive, highly variable, and suboptimal for OIP quality control (QC) testing. By contrast, Efficient Data Analysis (EDA) combined with Abbreviated Impactor Measurement (AIM) systems pertinent either for QC and-/strong>possibly-/strong>for adult Human Respiratory Tract (pHRT) has been introduced for OIP performance assessment during and post-development. This article summarizes available evidence and discusses a strategy for using either abbreviated or full-resolution CI systems depending on the purpose of the measurement, such that adequate, accurate, and efficient testing of aerodynamic particle size distribution (APSD) of OIPs can be achieved throughout the lifecycle of a product. Under these proposals, a comprehensive testing program should initially be conducted by full-resolution CI in OIP development to ascertain the product’s APSD. Subsequently, correlations should be established from the selected AIM CIs to the corresponding full-resolution system, ideally developing specifications common to both techniques. In the commercial phase, it should be possible to release product using AIM/EDA, keeping the full-resolution CI for investigations, change control, and trouble-shooting, thus optimizing resources for APSD characterization throughout the product lifecycle. If an in vitro-em class="a-plus-plus">in vivo relationship is established and clinically relevant sizes are known, an AIM–pHRT could serve as a quick indicator that clinically relevant fractions have not changed and also, in the management of post-approval changes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700