Role of the steroidogenic acute regulatory protein in health and disease
详细信息    查看全文
  • 作者:Pulak R. Manna ; Cloyce L. Stetson ; Andrzej T. Slominski ; Kevin Pruitt
  • 关键词:STAR ; Steroidogenesis ; STAR deficiency and Lipoid CAH ; HSL and LXR ; Atherosclerosis ; Aging
  • 刊名:Endocrine
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:51
  • 期:1
  • 页码:7-21
  • 全文大小:978 KB
  • 参考文献:1.S. Azhar, E. Reaven, Scavenger receptor class BI and selective cholesteryl ester uptake: partners in the regulation of steroidogenesis. Mol. Cell. Endocrinol. 195, 1–26 (2002)PubMed CrossRef
    2.F.B. Kraemer, W.J. Shen, K. Harada, S. Patel, J. Osuga, S. Ishibashi, S. Azhar, Hormone-sensitive lipase is required for high-density lipoprotein cholesteryl ester-supported adrenal steroidogenesis. Mol. Endocrinol. 18, 549–557 (2004)PubMed CrossRef
    3.P.R. Manna, M.T. Dyson, D.M. Stocco, Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol. Hum. Reprod. 15, 321–333 (2009)PubMed PubMedCentral CrossRef
    4.P.R. Manna, D.M. Stocco, Regulation of the steroidogenic acute regulatory protein expression: functional and physiological consequences. Curr. Drug Targets Immune Endocr. Metabol. Disord. 5, 93–108 (2005)PubMed CrossRef
    5.D.M. Stocco, X. Wang, Y. Jo, P.R. Manna, Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol. Endocrinol. 19, 2647–2659 (2005)PubMed CrossRef
    6.W.L. Miller, H.S. Bose, Early steps in steroidogenesis: intracellular cholesterol trafficking. J. Lipid Res. 52, 2111–2135 (2011)PubMed PubMedCentral CrossRef
    7.A.F. Castillo, U. Orlando, K.E. Helfenberger, C. Poderoso, E.J. Podesta, The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis. Mol. Cell. Endocrinol. 408, 73–79 (2015)PubMed CrossRef
    8.D. Stocco, Star protein and the regulation of steroid hormone biosynthesis. Annu. Rev. Physiol. 63, 193–213 (2001)PubMed CrossRef
    9.M. Ascoli, F. Fanelli, D.L. Segaloff, The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr. Rev. 23, 141–174 (2002)PubMed CrossRef
    10.W.L. Miller, StAR search–what we know about how the steroidogenic acute regulatory protein mediates mitochondrial cholesterol import. Mol. Endocrinol. 21, 589–601 (2007)PubMed CrossRef
    11.W.L. Miller, R.J. Auchus, The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32, 81–151 (2011)PubMed PubMedCentral CrossRef
    12.P.R. Manna, J. Cohen-Tannoudji, R. Counis, C.W. Garner, I. Huhtaniemi, F.B. Kraemer, D.M. Stocco, Mechanisms of action of hormone-sensitive lipase in mouse Leydig cells: its role in the regulation of the steroidogenic acute regulatory protein. J. Biol. Chem. 288, 8505–8518 (2013)PubMed PubMedCentral CrossRef
    13.F. Arakane, C.B. Kallen, H. Watari, J.A. Foster, N.B. Sepuri, D. Pain, S.E. Stayrook, M. Lewis, G.L. Gerton, J.F. Strauss 3rd, The mechanism of action of steroidogenic acute regulatory protein (StAR). StAR acts on the outside of mitochondria to stimulate steroidogenesis. J. Biol. Chem. 273, 16339–16345 (1998)PubMed CrossRef
    14.I.P. Artemenko, D. Zhao, D.B. Hales, K.H. Hales, C.R. Jefcoate, Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J. Biol. Chem. 276, 46583–46596 (2001)PubMed CrossRef
    15.J. Liu, M.B. Rone, V. Papadopoulos, Protein–protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J. Biol. Chem. 281, 38879–38893 (2006)PubMed CrossRef
    16.J. Fan, J. Liu, M. Culty, V. Papadopoulos, Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog. Lipid Res. 49, 218–234 (2010)PubMed PubMedCentral CrossRef
    17.M.B. Rone, A.S. Midzak, L. Issop, G. Rammouz, S. Jagannathan, J. Fan, X. Ye, J. Blonder, T. Veenstra, V. Papadopoulos, Identification of a dynamic mitochondrial protein complex driving cholesterol import, trafficking, and metabolism to steroid hormones. Mol. Endocrinol. 26, 1868–1882 (2012)PubMed CrossRef
    18.C. Poderoso, A. Duarte, M. Cooke, U. Orlando, V. Gottifredi, A.R. Solano, J.R. Lemos, E.J. Podesta, The spatial and temporal regulation of the hormonal signal. Role of mitochondria in the formation of a protein complex required for the activation of cholesterol transport and steroids synthesis. Mol. Cell. Endocrinol. 371, 26–33 (2013)PubMed CrossRef
    19.U. Orlando, M. Cooke, F. Cornejo Maciel, V. Papadopoulos, P. Maloberti, E.J. Podesta, Characterization of the mouse promoter region of the acyl-CoA synthetase 4 gene: role of Sp1 and CREB. Mol. Cell. Endocrinol. 369, 15–26 (2013)PubMed CrossRef
    20.J. Fan, E. Campioli, A. Midzak, M. Culty, V. Papadopoulos, Conditional steroidogenic cell-targeted deletion of TSPO unveils a crucial role in viability and hormone-dependent steroid formation. Proc. Natl. Acad. Sci. 112, 7261–7266 (2015)PubMed PubMedCentral CrossRef
    21.B.J. Clark, J. Wells, S.R. King, D.M. Stocco, The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J. Biol. Chem. 269, 28314–28322 (1994)PubMed
    22.D.M. Stocco, B.J. Clark, Regulation of the acute production of steroids in steroidogenic cells. Endocr. Rev. 17, 221–244 (1996)PubMed
    23.D. Lin, T. Sugawara, J.F. Strauss III, B.J. Clark, D.M. Stocco, P. Saenger, A. Rogol, W.L. Miller, Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 267, 1828–1831 (1995)PubMed CrossRef
    24.W.L. Miller, Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim. Biophys. Acta 1771, 663–676 (2007)PubMed CrossRef
    25.H. Bose, V.R. Lingappa, W.L. Miller, Rapid regulation of steroidogenesis by mitochondrial protein import. Nature 417, 87–91 (2002)PubMed CrossRef
    26.H.S. Bose, T. Sugawara, J.F. Strauss 3rd, W.L. Miller, The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. International Congenital Lipoid Adrenal Hyperplasia Consortium. N. Engl. J. Med. 335, 1870–1878 (1996)PubMed CrossRef
    27.D.M. Stocco, Clinical disorders associated with abnormal cholesterol transport: mutations in the steroidogenic acute regulatory protein. Mol. Cell. Endocrinol. 191, 19–25 (2002)PubMed CrossRef
    28.S.R. King, A. Bhangoo, D.M. Stocco, Functional and physiological consequences of StAR deficiency: role in lipoid congenital adrenal hyperplasia. Endocr. Dev. 20, 47–53 (2011)PubMed
    29.R.J. Auchus, W.L. Miller, Congenital adrenal hyperplasia–more dogma bites the dust. J. Clin. Endocrinol. Metab. 97, 772–775 (2012)PubMed CrossRef
    30.K.M. Caron, S.C. Soo, W.C. Wetsel, D.M. Stocco, B.J. Clark, K.L. Parker, Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia. Proc. Natl. Acad. Sci. 94, 11540–11545 (1997)PubMed PubMedCentral CrossRef
    31.T. Hasegawa, L. Zhao, K.M. Caron, G. Majdic, T. Suzuki, S. Shizawa, H. Sasano, K.L. Parker, Developmental roles of the steroidogenic acute regulatory protein (StAR) as revealed by StAR knockout mice. Mol. Endocrinol. 14, 1462–1471 (2000)PubMed CrossRef
    32.H.S. Bose, S. Sato, J. Aisenberg, S.A. Shalev, N. Matsuo, W.L. Miller, Mutations in the steroidogenic acute regulatory protein (StAR) in six patients with congenital lipoid adrenal hyperplasia. J. Clin. Endocrinol. Metab. 85, 3636–3639 (2000)PubMed
    33.W.L. Miller, Steroid hormone synthesis in mitochondria. Mol. Cell. Endocrinol. 379, 62–73 (2013)PubMed CrossRef
    34.A.T. Slominski, P.R. Manna, R.C. Tuckey, On the role of skin in the regulation of local and systemic steroidogenic activities. Steroids (2015). doi:10.​1016/​j.​steroids.​2015.​04.​006
    35.P.R. Manna, A.T. Slominski, S.R. King, C.L. Stetson, D.M. Stocco, Synergistic activation of steroidogenic acute regulatory protein expression and steroid biosynthesis by retinoids: involvement of cAMP/PKA signaling. Endocrinology 155, 576–591 (2014)PubMed PubMedCentral CrossRef
    36.J. Liu, H. Li, V. Papadopoulos, PAP7, a PBR/PKA-RIalpha-associated protein: a new element in the relay of the hormonal induction of steroidogenesis. J. Steroid Biochem. Mol. Biol. 85, 275–283 (2003)PubMed CrossRef
    37.S. Ghosh, B. Zhao, J. Bie, J. Song, Macrophage cholesteryl ester mobilization and atherosclerosis. Vasc. Pharmacol. 52, 1–10 (2010)CrossRef
    38.J. Osuga, S. Ishibashi, T. Oka, H. Yagyu, R. Tozawa, A. Fujimoto, F. Shionoiri, N. Yahagi, F.B. Kraemer, O. Tsutsumi, N. Yamada, Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc. Natl. Acad. Sci. 97, 787–792 (2000)PubMed PubMedCentral CrossRef
    39.F.B. Kraemer, W.J. Shen, Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J. Lipid Res. 43, 1585–1594 (2002)PubMed CrossRef
    40.B. Zhao, J. Bie, J. Wang, S.A. Marqueen, S. Ghosh, Identification of a novel intracellular cholesteryl ester hydrolase (carboxylesterase 3) in human macrophages: compensatory increase in its expression after carboxylesterase 1 silencing. Am. J. Physiol. Cell Physiol. 303, C427–C435 (2012)PubMed PubMedCentral CrossRef
    41.K. Sakai, M. Igarashi, D. Yamamuro, T. Ohshiro, S. Nagashima, M. Takahashi, B. Enkhtuvshin, M. Sekiya, H. Okazaki, J. Osuga, S. Ishibashi, Critical role of neutral cholesteryl ester hydrolase 1 in cholesteryl ester hydrolysis in murine macrophages. J. Lipid Res. 55, 2033–2040 (2014)PubMed PubMedCentral CrossRef
    42.J.J. Repa, K.E. Berge, C. Pomajzl, J.A. Richardson, H. Hobbs, D.J. Mangelsdorf, Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J. Biol. Chem. 277, 18793–18800 (2002)PubMed CrossRef
    43.C.L. Cummins, D.H. Volle, Y. Zhang, J.G. McDonald, B. Sion, A.M. Lefrancois-Martinez, F. Caira, G. Veyssiere, D.J. Mangelsdorf, J.M. Lobaccaro, Liver X receptors regulate adrenal cholesterol balance. J. Clin. Investig. 116, 1902–1912 (2006)PubMed PubMedCentral CrossRef
    44.D.H. Volle, J.M. Lobaccaro, Role of the nuclear receptors for oxysterols LXRs in steroidogenic tissues: beyond the “foie gras”, the steroids and sex? Mol. Cell. Endocrinol. 265–266, 183–189 (2007)PubMed CrossRef
    45.P.R. Manna, D.W. Eubank, E. Lalli, P. Sassone-Corsi, D.M. Stocco, Transcriptional regulation of the mouse steroidogenic acute regulatory protein gene by the cAMP response-element binding protein and steroidogenic factor 1. J. Mol. Endocrinol. 30, 381–397 (2003)PubMed CrossRef
    46.P.R. Manna, D.M. Stocco, Crosstalk of CREB and Fos/Jun on a single cis-element: transcriptional repression of the steroidogenic acute regulatory protein gene. J. Mol. Endocrinol. 39, 261–277 (2007)PubMed CrossRef
    47.P.R. Manna, M.T. Dyson, D.M. Stocco, Role of basic leucine zipper proteins in transcriptional regulation of the steroidogenic acute regulatory protein gene. Mol. Cell. Endocrinol. 302, 1–11 (2009)PubMed CrossRef
    48.H.A. Lavoie, S.R. King, Transcriptional regulation of steroidogenic genes: sTARD1, CYP11A1 and HSD3B. Exp. Biol. Med. (Maywood) 234, 880–907 (2009)CrossRef
    49.B.J. Clark, S.C. Soo, K.M. Caron, Y. Ikeda, K.L. Parker, D.M. Stocco, Hormonal and developmental regulation of the steroidogenic acute regulatory protein. Mol. Endocrinol. 9, 1346–1355 (1995)PubMed
    50.S.R. King, T. Ronen-Fuhrmann, R. Timberg, B.J. Clark, J. Orly, D.M. Stocco, Steroid production after in vitro transcription, translation, and mitochondrial processing of protein products of complementary deoxyribonucleic acid for steroidogenic acute regulatory protein. Endocrinology 136, 5165–5176 (1995)PubMed
    51.P.R. Manna, S.P. Chandrala, S.R. King, Y. Jo, R. Counis, I.T. Huhtaniemi, D.M. Stocco, Molecular mechanisms of insulin-like growth factor-I mediated regulation of the steroidogenic acute regulatory protein in mouse leydig cells. Mol. Endocrinol. 20, 362–378 (2006)PubMed CrossRef
    52.B.J. Clark, R. Combs, K.H. Hales, D.B. Hales, D.M. Stocco, Inhibition of transcription affects synthesis of steroidogenic acute regulatory protein and steroidogenesis in MA-10 mouse Leydig tumor cells. Endocrinology 138, 4893–4901 (1997)PubMed
    53.A.P. Mathieu, A. Fleury, L. Ducharme, P. Lavigne, J.G. LeHoux, Insights into steroidogenic acute regulatory protein (StAR)-dependent cholesterol transfer in mitochondria: evidence from molecular modeling and structure-based thermodynamics supporting the existence of partially unfolded states of StAR. J. Mol. Endocrinol. 29, 327–345 (2002)PubMed CrossRef
    54.A. Roostaee, E. Barbar, J.G. Lehoux, P. Lavigne, Cholesterol binding is a prerequisite for the activity of the steroidogenic acute regulatory protein (StAR). Biochem. J. 412, 553–562 (2008)PubMed CrossRef
    55.E. Barbar, J.G. Lehoux, P. Lavigne, Toward the NMR structure of StAR. Mol. Cell. Endocrinol. 300, 89–93 (2009)PubMed CrossRef
    56.B.J. Clark, V. Ranganathan, R. Combs, Steroidogenic acute regulatory protein expression is dependent upon post-translational effects of cAMP-dependent protein kinase A. Mol. Cell. Endocrinol. 173, 183–192 (2001)PubMed CrossRef
    57.L.K. Christenson, J.F. Strauss 3rd, Steroidogenic acute regulatory protein: an update on its regulation and mechanism of action. Arch. Med. Res. 32, 576–586 (2001)PubMed CrossRef
    58.N. Yivgi-Ohana, N. Sher, N. Melamed-Book, S. Eimerl, M. Koler, P.R. Manna, D.M. Stocco, J. Orly, Transcription of steroidogenic acute regulatory protein in the rodent ovary and placenta: alternative modes of cyclic adenosine 3′, 5′-monophosphate dependent and independent regulation. Endocrinology 150, 977–989 (2009)PubMed PubMedCentral CrossRef
    59.F. Arakane, S.R. King, Y. Du, C.B. Kallen, L.P. Walsh, H. Watari, D.M. Stocco, J.F. Strauss 3rd, Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J. Biol. Chem. 272, 32656–32662 (1997)PubMed CrossRef
    60.A. Fleury, A.P. Mathieu, L. Ducharme, D.B. Hales, J.G. LeHoux, Phosphorylation and function of the hamster adrenal steroidogenic acute regulatory protein (StAR). J. Steroid Biochem. Mol. Biol. 91, 259–271 (2004)PubMed CrossRef
    61.P.R. Manna, S.P. Chandrala, Y. Jo, D.M. Stocco, cAMP-independent signaling regulates steroidogenesis in mouse Leydig cells in the absence of StAR phosphorylation. J. Mol. Endocrinol. 37, 81–95 (2006)PubMed CrossRef
    62.P.R. Manna, M.T. Dyson, Y. Jo, D.M. Stocco, Role of dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the X chromosome, gene 1 in protein kinase A- and protein kinase C-mediated regulation of the steroidogenic acute regulatory protein expression in mouse Leydig tumor cells: mechanism of action. Endocrinology 150, 187–199 (2009)PubMed PubMedCentral CrossRef
    63.B.A. Cooke, Signal transduction involving cyclic AMP-dependent and cyclic AMP- independent mechanisms in the control of steroidogenesis. Mol. Cell. Endocrinol. 151, 25–35 (1999)PubMed CrossRef
    64.J.S. Richards, New signaling pathways for hormones and cyclic adenosine 3′,5′-monophosphate action in endocrine cells. Mol. Endocrinol. 15, 209–218 (2001)PubMed
    65.P.R. Manna, L. Joshi, V.N. Reinhold, M.L. Aubert, N. Suganuma, K. Pettersson, I.T. Huhtaniemi, Synthesis, purification and structural and functional characterization of recombinant form of a common genetic variant of human luteinizing hormone. Hum. Mol. Genet. 11, 301–315 (2002)PubMed CrossRef
    66.D.B. Hales, Testicular macrophage modulation of Leydig cell steroidogenesis. J. Reprod. Immunol. 57, 3–18 (2002)PubMed CrossRef
    67.P.R. Manna, P. Pakarinen, T. El-Hefnawy, I.T. Huhtaniemi, Functional assessment of the calcium messenger system in cultured mouse Leydig tumor cells: regulation of human chorionic gonadotropin-induced expression of the steroidogenic acute regulatory protein. Endocrinology 140, 1739–1751 (1999)PubMed CrossRef
    68.X. Wang, L.P. Walsh, A.J. Reinhart, D.M. Stocco, The role of arachidonic acid in steroidogenesis and steroidogenic acute regulatory (StAR) gene and protein expression. J. Biol. Chem. 275, 20204–20209 (2000)PubMed CrossRef
    69.P.R. Manna, I.T. Huhtaniemi, X.J. Wang, D.W. Eubank, D.M. Stocco, Mechanisms of epidermal growth factor signaling: regulation of steroid biosynthesis and the steroidogenic acute regulatory protein in mouse leydig tumor cells. Biol. Reprod. 67, 1393–1404 (2002)PubMed CrossRef
    70.F. Cornejo Maciel, P. Maloberti, I. Neuman, F. Cano, R. Castilla, F. Castillo, C. Paz, E.J. Podesta, An arachidonic acid-preferring acyl-CoA synthetase is a hormone-dependent and obligatory protein in the signal transduction pathway of steroidogenic hormones. J. Mol. Endocrinol. 34, 655–666 (2005)PubMed CrossRef
    71.J.Y. Park, Y.Q. Su, M. Ariga, E. Law, S.L. Jin, M. Conti, EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303, 682–684 (2004)PubMed CrossRef
    72.M. Jamnongjit, A. Gill, S.R. Hammes, Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation. Proc. Natl. Acad. Sci. 102, 16257–16262 (2005)PubMed PubMedCentral CrossRef
    73.J. Nakae, T. Tajima, T. Sugawara, F. Arakane, K. Hanaki, T. Hotsubo, N. Igarashi, Y. Igarashi, T. Ishii, N. Koda, T. Kondo, H. Kohno, Y. Nakagawa, K. Tachibana, Y. Takeshima, K. Tsubouchi, J.F. Strauss 3rd, K. Fujieda, Analysis of the steroidogenic acute regulatory protein (StAR) gene in Japanese patients with congenital lipoid adrenal hyperplasia. Hum. Mol. Genet. 6, 571–576 (1997)PubMed CrossRef
    74.E. Okuyama, N. Nishi, S. Onishi, S. Itoh, Y. Ishii, H. Miyanaka, K. Fujita, Y. Ichikawa, A novel splicing junction mutation in the gene for the steroidogenic acute regulatory protein causes congenital lipoid adrenal hyperplasia. J. Clin. Endocrinol. Metab. 82, 2337–2342 (1997)PubMed
    75.W.L. Miller, Congenital lipoid adrenal hyperplasia: the human gene knockout for the steroidogenic acute regulatory protein. J. Mol. Endocrinol. 19, 227–240 (1997)PubMed CrossRef
    76.W.L. Miller, J.F. Strauss 3rd, Molecular pathology and mechanism of action of the steroidogenic acute regulatory protein, StAR. J. Steroid. Biochem. Mol. Biol. 69, 131–141 (1999)PubMed CrossRef
    77.K. Fujieda, K. Okuhara, S. Abe, T. Tajima, T. Mukai, J. Nakae, Molecular pathogenesis of lipoid adrenal hyperplasia and adrenal hypoplasia congenita. J. Steroid Biochem. Mol. Biol. 85, 483–489 (2003)PubMed CrossRef
    78.M.K. Tee, D. Lin, T. Sugawara, J.A. Holt, Y. Guiguen, B. Buckingham, J.F. Strauss 3rd, W.L. Miller, T->A transversion 11 bp from a splice acceptor site in the human gene for steroidogenic acute regulatory protein causes congenial lipoid adrenal hyperplasia. Hum. Mol. Genet. 4, 2299–2305 (1995)PubMed CrossRef
    79.L.K. Christenson, J.F. Strauss 3rd, Steroidogenic acute regulatory protein (StAR) and the intramitochondrial translocation of cholesterol. Biochim. Biophys. Acta 1529, 175–187 (2000)PubMed CrossRef
    80.M.I. New, Inborn errors of adrenal steroidogenesis. Mol. Cell. Endocrinol. 211, 75–83 (2003)PubMed CrossRef
    81.N. Krone, J. Grotzinger, P.M. Holterhus, W.G. Sippell, H.P. Schwarz, F.G. Riepe, Congenital adrenal hyperplasia due to 11-hydroxylase deficiency–insights from two novel CYP11B1 mutations (p. M92X, p.R453Q). Horm. Res. 72, 281–286 (2009)PubMed CrossRef
    82.E.M. Brett, R.J. Auchus, Genetic forms of adrenal insufficiency. Endocr. Pract. 21, 395–399 (2015)PubMed CrossRef
    83.B.P. Hauffa, W.L. Miller, M.M. Grumbach, F.A. Conte, S.L. Kaplan, Congenital adrenal hyperplasia due to deficient cholesterol side-chain cleavage activity (20, 22-desmolase) in a patient treated for 18 years. Clin. Endocrinol. 23, 481–493 (1985)CrossRef
    84.H.S. Bose, O.H. Pescovitz, W.L. Miller, Spontaneous feminization in a 46, XX female patient with congenital lipoid adrenal hyperplasia due to a homozygous frameshift mutation in the steroidogenic acute regulatory protein. J. Clin. Endocrinol. Metab. 82, 1511–1515 (1997)PubMed
    85.K. Fujieda, T. Tajima, J. Nakae, S. Sageshima, K. Tachibana, S. Suwa, T. Sugawara, J.F. Strauss 3rd, Spontaneous puberty in,46, XX subjects with congenital lipoid adrenal hyperplasia. Ovarian steroidogenesis is spared to some extent despite inactivating mutations in the steroidogenic acute regulatory protein (StAR) gene. J. Clin. Investig. 99, 1265–1271 (1997)PubMed PubMedCentral CrossRef
    86.M. Shima, A. Tanae, K. Miki, N. Katsumata, S. Matsumoto, S. Nakajima, T. Harada, T. Shinagawa, T. Tanaka, S. Okada, Mechanism for the development of ovarian cysts in patients with congenital lipoid adrenal hyperplasia. Eur. J. Endocrinol. 142, 274–279 (2000)PubMed CrossRef
    87.J.F. Strauss 3rd, T. Kishida, L.K. Christenson, T. Fujimoto, H. Hiroi, START domain proteins and the intracellular trafficking of cholesterol in steroidogenic cells. Mol. Cell. Endocrinol. 202, 59–65 (2000)CrossRef
    88.T. Kishida, I. Kostetskii, Z. Zhang, F. Martinez, P. Liu, S.U. Walkley, N.K. Dwyer, E.J. Blanchette-Mackie, G.L. Radice, J.F. Strauss 3rd, Targeted mutation of the MLN64 START domain causes only modest alterations in cellular sterol metabolism. J. Biol. Chem. 279, 19276–19285 (2004)PubMed CrossRef
    89.S.R. King, A.A. Matassa, E.K. White, L.P. Walsh, Y. Jo, R.M. Rao, D.M. Stocco, M.E. Reyland, Oxysterols regulate expression of the steroidogenic acute regulatory protein. J. Mol. Endocrinol. 32, 507–517 (2004)PubMed CrossRef
    90.P.R. Manna, Y. Jo, D.M. Stocco, Regulation of Leydig cell steroidogenesis by extracellular signal-regulated kinase 1/2: role of protein kinase A and protein kinase C signaling. J. Endocrinol. 193, 53–63 (2007)PubMed CrossRef
    91.H.S. Bose, R.M. Whittal, Y. Ran, M. Bose, B.Y. Baker, W.L. Miller, StAR-like activity and molten globule behavior of StARD6, a male germ-line protein. Biochemistry 47, 2277–2288 (2008)PubMed CrossRef
    92.M. Esparza-Perusquia, S. Olvera-Sanchez, O. Flores-Herrera, H. Flores-Herrera, A. Guevara-Flores, J.P. Pardo, M.T. Espinosa-Garcia, F. Martinez, Mitochondrial proteases act on STARD3 to activate progesterone synthesis in human syncytiotrophoblast. Biochim. Biophys. Acta 1850, 107–117 (2015)PubMed CrossRef
    93.K.M. Caron, S.C. Soo, K.L. Parker, Targeted disruption of StAR provides novel insights into congenital adrenal hyperplasia. Endocr. Res. 24, 827–834 (1998)PubMed CrossRef
    94.S.E. Bulun, Z. Lin, G. Imir, S. Amin, M. Demura, B. Yilmaz, R. Martin, H. Utsunomiya, S. Thung, B. Gurates, M. Tamura, D. Langoi, S. Deb, Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol. Rev. 57, 359–383 (2005)PubMed CrossRef
    95.S.E. Bulun, E.R. Simpson, Aromatase expression in women’s cancers. Adv. Exp. Med. Biol. 630, 112–132 (2008)PubMed CrossRef
    96.S.E. Bulun, Z. Lin, H. Zhao, M. Lu, S. Amin, S. Reierstad, D. Chen, Regulation of aromatase expression in breast cancer tissue. Ann. N. Y. Acad. Sci. 1155, 121–131 (2009)PubMed CrossRef
    97.K.R. Holloway, A. Barbieri, S. Malyarchuk, M. Saxena, A. Nedeljkovic-Kurepa, M. Cameron Mehl, A. Wang, X. Gu, K. Pruitt, SIRT1 positively regulates breast cancer associated human aromatase (CYP19A1) expression. Mol. Endocrinol. 27, 480–490 (2013)PubMed PubMedCentral CrossRef
    98.E.R. Simpson, C. Clyne, G. Rubin, W.C. Boon, K. Robertson, K. Britt, C. Speed, M. Jones, Aromatase—a brief overview. Annu. Rev. Physiol. 64, 93–127 (2002)PubMed CrossRef
    99.S.E. Bulun, S. Yang, Z. Fang, B. Gurates, M. Tamura, S. Sebastian, Estrogen production and metabolism in endometriosis. Ann. N. Y. Acad. Sci. 955, 396–406 (2002)CrossRef
    100.S.E. Bulun, Endometriosis. N. Engl. J. Med. 360, 268–279 (2009)PubMed CrossRef
    101.R.L. Barbieri, S. Missmer, Endometriosis and infertility: a cause-effect relationship? Ann. N. Y. Acad. Sci. 955, 396–406 (2002)CrossRef
    102.D.W. Cramer, S.A. Missmer, The epidemiology of endometriosis. Ann. N. Y. Acad. Sci. 955, 396–406 (2002)CrossRef
    103.R.B. Ness, D.W. Cramer, M.T. Goodman, S.K. Kjaer, K. Mallin, B.J. Mosgaard, D.M. Purdie, H.A. Risch, R. Vergona, A.H. Wu, Infertility, fertility drugs, and ovarian cancer: a pooled analysis of case-control studies. Am. J. Epidemiol. 155, 217–224 (2002)PubMed CrossRef
    104.J.J. Kim, T. Kurita, S.E. Bulun, Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocr. Rev. 34, 130–162 (2013)PubMed PubMedCentral CrossRef
    105.S.J. Tsai, M.H. Wu, C.C. Lin, H.S. Sun, H.M. Chen, Regulation of steroidogenic acute regulatory protein expression and progesterone production in endometriotic stromal cells. J. Clin. Endocrinol. Metab. 86, 5765–5773 (2001)PubMed CrossRef
    106.S. Yang, Z. Fang, T. Suzuki, H. Sasano, J. Zhou, B. Gurates, M. Tamura, K. Ferrer, S. Bulun, Regulation of aromatase P450 expression in endometriotic and endometrial stromal cells by CCAAT/enhancer binding proteins (C/EBPs): decreased C/EBPbeta in endometriosis is associated with overexpression of aromatase. J. Clin. Endocrinol. Metab. 87, 2336–2345 (2002)PubMed
    107.E. Attar, S.E. Bulun, Aromatase and other steroidogenic genes in endometriosis: translational aspects. Hum. Reprod. Update 12, 49–56 (2006)PubMed CrossRef
    108.W.D. Nes, Y.O. Lukyanenko, Z.H. Jia, S. Quideau, W.N. Howald, T.K. Pratum, R.R. West, J.C. Hutson, Identification of the lipophilic factor produced by macrophages that stimulates steroidogenesis. Endocrinology 141, 953–958 (2000)PubMed
    109.Y.O. Lukyanenko, J.J. Chen, J.C. Hutson, Production of 25-hydroxycholesterol by testicular macrophages and its effects on Leydig cells. Biol. Reprod. 64, 790–796 (2001)PubMed CrossRef
    110.J.A. Crow, K.L. Herring, S. Xie, A. Borazjani, P.M. Potter, M.K. Ross, Inhibition of carboxylesterase activity of THP1 monocytes/macrophages and recombinant human carboxylesterase 1 by oxysterols and fatty acids. Biochim. Biophys. Acta 1801, 31–41 (2010)PubMed PubMedCentral CrossRef
    111.E.S. Surrey, K.M. Silverberg, M.W. Surrey, W.B. Schoolcraft, Effect of prolonged gonadotropin-releasing hormone agonist therapy on the outcome of in vitro fertilization-embryo transfer in patients with endometriosis. Fertil. Steril. 78, 699–704 (2002)PubMed CrossRef
    112.V.M. Rice, Conventional medical therapies for endometriosis. Ann. N. Y. Acad. Sci. 955, 396–406 (2002)CrossRef
    113.R.K. Ailawadi, S. Jobanputra, M. Kataria, B. Gurates, S.E. Bulun, Treatment of endometriosis and chronic pelvic pain with letrozole and norethindrone acetate: a pilot study. Fertil. Steril. 81, 290–296 (2004)PubMed CrossRef
    114.S.J. Yeaman, Hormone-sensitive lipase—new roles for an old enzyme. Biochem. J. 379, 11–22 (2004)PubMed PubMedCentral CrossRef
    115.K.R. Feingold, J.K. Shigenaga, M.R. Kazemi, C.M. McDonald, S.M. Patzek, A.S. Cross, A. Moser, C. Grunfeld, Mechanisms of triglyceride accumulation in activated macrophages. J. Leukoc. Biol. 92, 829–839 (2012)PubMed PubMedCentral CrossRef
    116.C. Holm, T.G. Kirchgessner, K.L. Svenson, G. Fredrikson, S. Nilsson, C.G. Miller, J.E. Shively, C. Heinzmann, R.S. Sparkes, T. Mohandas et al., Hormone-sensitive lipase: sequence, expression, and chromosomal localization to 19 cent-q13.3. Science 241, 1503–1506 (1988)PubMed CrossRef
    117.H. Li, M. Brochu, S.P. Wang, L. Rochdi, M. Cote, G. Mitchell, N. Gallo-Payet, Hormone-sensitive lipase deficiency in mice causes lipid storage in the adrenal cortex and impaired corticosterone response to corticotropin stimulation. Endocrinology 143, 3333–3340 (2002)PubMed CrossRef
    118.S. Chung, S.P. Wang, L. Pan, G. Mitchell, J. Trasler, L. Hermo, Infertility and testicular defects in hormone-sensitive lipase-deficient mice. Endocrinology 142, 4272–4281 (2001)PubMed CrossRef
    119.S.P. Wang, S. Chung, K. Soni, H. Bourdages, L. Hermo, J. Trasler, G.A. Mitchell, Expression of human hormone-sensitive lipase (HSL) in postmeiotic germ cells confers normal fertility to HSL-deficient mice. Endocrinology 145, 5688–5693 (2004)PubMed CrossRef
    120.T. Osterlund, Structure-function relationships of hormone-sensitive lipase. Eur. J. Biochem. 268, 1899–1907 (2001)PubMed CrossRef
    121.C. Holm, Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem. Soc. Trans. 31, 1120–1124 (2003)PubMed CrossRef
    122.C. Krintel, M. Morgelin, D.T. Logan, C. Holm, Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area. FEBS J. 276, 4752–4762 (2009)PubMed CrossRef
    123.W.J. Shen, S. Patel, V. Natu, R. Hong, J. Wang, S. Azhar, F.B. Kraemer, Interaction of hormone-sensitive lipase with steroidogenic acute regulatory protein: facilitation of cholesterol transfer in adrenal. J. Biol. Chem. 278, 43870–43876 (2003)PubMed CrossRef
    124.R.M. Rao, Y. Jo, S. Leers-Sucheta, H.S. Bose, W.L. Miller, S. Azhar, D.M. Stocco, Differential regulation of steroid hormone biosynthesis in R2C and MA-10 Leydig tumor cells: role of SR-B1-mediated selective cholesteryl ester transport. Biol. Reprod. 68, 114–121 (2003)PubMed CrossRef
    125.S. Uda, S. Spolitu, F. Angius, M. Collu, S. Accossu, S. Banni, E. Murru, F. Sanna, B. Batetta, Role of HDL in cholesteryl ester metabolism of lipopolysaccharide-activated P388D1 macrophages. J. Lipid Res. 54, 3158–3169 (2013)PubMed PubMedCentral CrossRef
    126.J.T. Gwynne, J.F. Strauss 3rd, The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr. Rev. 3, 299–329 (1982)PubMed CrossRef
    127.M.S. Brown, J.L. Goldstein, A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986)PubMed CrossRef
    128.E.J. Blanchette-Mackie, Intracellular cholesterol trafficking: role of the NPC1 protein. Biochim. Biophys. Acta 1486, 171–183 (2000)PubMed CrossRef
    129.H. Watari, E.J. Blanchette-Mackie, N.K. Dwyer, G. Sun, J.M. Glick, S. Patel, E.B. Neufeld, P.G. Pentchev, J.F. Strauss 3rd, NPC1-containing compartment of human granulosa-lutein cells: a role in the intracellular trafficking of cholesterol supporting steroidogenesis. Exp. Cell Res. 255, 56–66 (2000)PubMed CrossRef
    130.N.Y. Gevry, B.D. Murphy, The role and regulation of the Niemann-Pick C1 gene in adrenal steroidogenesis. Endocr. Res. 28, 403–412 (2002)PubMed CrossRef
    131.E. Rigamonti, L. Helin, S. Lestavel, A.L. Mutka, M. Lepore, C. Fontaine, M.A. Bouhlel, S. Bultel, J.C. Fruchart, E. Ikonen, V. Clavey, B. Staels, G. Chinetti-Gbaguidi, Liver X receptor activation controls intracellular cholesterol trafficking and esterification in human macrophages. Circ. Res. 97, 682–689 (2005)PubMed CrossRef
    132.K.M. Robertson, G.U. Schuster, K.R. Steffensen, O. Hovatta, S. Meaney, K. Hultenby, L.C. Johansson, K. Svechnikov, O. Soder, J.A. Gustafsson, The liver X receptor-{beta} is essential for maintaining cholesterol homeostasis in the testis. Endocrinology 146, 2519–2530 (2005)PubMed CrossRef
    133.D.H. Volle, K. Mouzat, R. Duggavathi, B. Siddeek, P. Dechelotte, B. Sion, G. Veyssiere, M. Benahmed, J.M. Lobaccaro, Multiple roles of the nuclear receptors for oxysterols liver X receptor to maintain male fertility. Mol. Endocrinol. 21, 1014–1027 (2007)PubMed CrossRef
    134.M. Clagett-Dame, H.F. DeLuca, The role of vitamin A in mammalian reproduction and embryonic development. Annu. Rev. Nutr. 22, 347–381 (2002)PubMed CrossRef
    135.A. Molotkov, N. Molotkova, G. Duester, Retinoic acid guides eye morphogenetic movements via paracrine signaling but is unnecessary for retinal dorsoventral patterning. Development 133, 1901–1910 (2006)PubMed PubMedCentral CrossRef
    136.A.W. See, M. Clagett-Dame, The temporal requirement for vitamin A in the developing eye: mechanism of action in optic fissure closure and new roles for the vitamin in regulating cell proliferation and adhesion in the embryonic retina. Dev. Biol. 325, 94–105 (2009)PubMed CrossRef
    137.N. Bushue, Y.J. Wan, Retinoid pathway and cancer therapeutics. Adv. Drug Deliv. Rev. 62, 1285–1298 (2010)PubMed PubMedCentral CrossRef
    138.C.R. Olson, C.V. Mello, Significance of vitamin A to brain function, behavior and learning. Mol. Nutr. Food Res. 54, 489–495 (2010)PubMed PubMedCentral CrossRef
    139.A. Slominski, B. Zbytek, G. Nikolakis, P.R. Manna, C. Skobowiat, M. Zmijewski, W. Li, Z. Janjetovic, A. Postlethwaite, C.C. Zouboulis, R.C. Tuckey, Steroidogenesis in the skin: implications for local immune functions. J. Steroid Biochem. Mol. Biol. 137, 107–123 (2010)CrossRef
    140.D. Bonhomme, A.M. Minni, S. Alfos, P. Roux, E. Richard, P. Higueret, M.P. Moisan, V. Pallet, K. Touyarot, Vitamin A status regulates glucocorticoid availability in Wistar rats: consequences on cognitive functions and hippocampal neurogenesis? Front. Behav. Neurosci. 8, 1–13 (2014)CrossRef
    141.N. Srivastava, ATP binding cassette transporter A1–key roles in cellular lipid transport and atherosclerosis. Mol. Cell. Biochem. 237, 155–164 (2002)PubMed CrossRef
    142.G. Chinetti-Gbaguidi, E. Rigamonti, L. Helin, A.L. Mutka, M. Lepore, J.C. Fruchart, V. Clavey, E. Ikonen, S. Lestavel, B. Staels, Peroxisome proliferator-activated receptor alpha controls cellular cholesterol trafficking in macrophages. J. Lipid Res. 46, 2717–2725 (2005)PubMed CrossRef
    143.J.F. Oram, A.M. Vaughan, ATP-Binding cassette cholesterol transporters and cardiovascular disease. Circ. Res. 99, 1031–1043 (2006)PubMed CrossRef
    144.S. Bultel, L. Helin, V. Clavey, G. Chinetti-Gbaguidi, E. Rigamonti, M. Colin, J.C. Fruchart, B. Staels, S. Lestavel, Liver X receptor activation induces the uptake of cholesteryl esters from high density lipoproteins in primary human macrophages. Arterioscler. Thromb. Vasc. Biol. 28, 2288–2295 (2008)PubMed CrossRef
    145.Y. Yuan, P. Li, J. Ye, Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 3, 173–181 (2012)PubMed CrossRef
    146.M. Bodzioch, E. Orso, J. Klucken, T. Langmann, A. Bottcher, W. Diederich, W. Drobnik, S. Barlage, C. Buchler, M. Porsch-Ozcurumez, W.E. Kaminski, H.W. Hahmann, K. Oette, G. Rothe, C. Aslanidis, K.J. Lackner, G. Schmitz, The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat. Genet. 22, 347–351 (1999)PubMed CrossRef
    147.F. Tazoe, H. Yagyu, H. Okazaki, M. Igarashi, K. Eto, S. Nagashima, T. Inaba, H. Shimano, J. Osuga, S. Ishibashi, Induction of ABCA1 by overexpression of hormone-sensitive lipase in macrophages. Biochem. Biophys. Res. Commun. 376, 111–115 (2008)PubMed CrossRef
    148.Y. Ning, Q. Bai, H. Lu, X. Li, W.M. Pandak, F. Zhao, S. Chen, S. Ren, L. Yin, Overexpression of mitochondrial cholesterol delivery protein, StAR, decreases intracellular lipids and inflammatory factors secretion in macrophages. Atherosclerosis 204, 0114–0120 (2009)CrossRef
    149.J.M. Taylor, F. Borthwick, C. Bartholomew, A. Graham, Overexpression of steroidogenic acute regulatory protein increases macrophage cholesterol efflux to apolipoprotein AI. Cardiovasc. Res. 86, 526–534 (2010)PubMed CrossRef
    150.A. Nohara, J. Kobayashi, H. Mabuchi, Retinoid X receptor heterodimer variants and cardiovascular risk factors. J. Atheroscler. Thromb. 16, 303–318 (2009)PubMed CrossRef
    151.M. Hozoji-Inada, Y. Munehira, K. Nagao, N. Kioka, K. Ueda, Liver X receptor beta (LXRbeta) interacts directly with ATP-binding cassette A1 (ABCA1) to promote high density lipoprotein formation during acute cholesterol accumulation. J. Biol. Chem. 286, 20117–20124 (2011)PubMed PubMedCentral CrossRef
    152.M. Ayaori, E. Yakushiji, M. Ogura, K. Nakaya, T. Hisada, H. Uto-Kondo, S. Takiguchi, Y. Terao, M. Sasaki, T. Komatsu, M. Iizuka, M. Yogo, Y. Uehara, H. Kagechika, T. Nakanishi, K. Ikewaki, Retinoic acid receptor agonists regulate expression of ATP-binding cassette transporter G1 in macrophages. Biochim. Biophys. Acta 1821, 561–572 (2012)PubMed CrossRef
    153.P.R. Manna, S.R. Sennoune, R. Martinez-Zaguilan, A.T. Slominski, K. Pruitt, Regulation of retinoid mediated cholesterol efflux involves liver X receptor activation in mouse macrophages. Biochem. Biophys. Res. Commun. 464, 312–317 (2015)PubMed CrossRef
    154.G. Chinetti, J.C. Fruchart, B. Staels, Transcriptional regulation of macrophage cholesterol trafficking by PPARalpha and LXR. Biochem. Soc. Trans. 34, 1128–1131 (2006)PubMed CrossRef
    155.N. Krone, N.A. Hanley, W. Arlt, Age-specific changes in sex steroid biosynthesis and sex development. Best. Pract. Res. Clin. Endocrinol. Metab. 21, 393–401 (2007)PubMed CrossRef
    156.H.S. Chahal, W.M. Drake, The endocrine system and aging. J. Pathol. 211, 173–180 (2007)PubMed CrossRef
    157.E. Makrantonaki, C.C. Zouboulis, Molecular mechanisms of skin aging: state of the art. Ann. N. Y. Acad. Sci. 1119, 40–50 (2007)PubMed CrossRef
    158.I. Huhtaniemi, A. Perheentupa, Diagnosis and therapy of male hormonal changes related to aging. Duodecim 125, 1099–1106 (2009)PubMed
    159.M.L. Traub, N. Santoro, Reproductive aging and its consequences for general health. Ann. N. Y. Acad. Sci. 1204, 179–187 (2010)PubMed CrossRef
    160.B. Manor, L.A. Lipsitz, Physiologic complexity and aging: implications for physical function and rehabilitation. Prog. Neuropsychopharmacol. Biol. Psychiatry 45, 287–293 (2013)PubMed PubMedCentral CrossRef
    161.T. Hertoghe, The “multiple hormone deficiency” theory of aging: is human senescence caused mainly by multiple hormone deficiencies? Ann. N. Y. Acad. Sci. 1057, 448–465 (2005)PubMed CrossRef
    162.A. Clegg, J. Young, S. Iliffe, M.O. Rikkert, K. Rockwood, Frailty in elderly people. Lancet 381, 752–762 (2013)PubMed CrossRef
    163.N.D. Shaw, S.S. Srouji, S.N. Histed, K.E. McCurnin, J.E. Hall, Aging attenuates the pituitary response to gonadotropin-releasing hormone. J. Clin. Endocrinol. Metab. 94, 3259–3264 (2009)PubMed PubMedCentral CrossRef
    164.I. Huhtaniemi, G. Forti, Male late-onset hypogonadism: pathogenesis, diagnosis and treatment. Nat. Rev. Urol. 8, 335–344 (2011)PubMed CrossRef
    165.J.D. Veldhuis, Changes in pituitary function with ageing and implications for patient care. Nat. Rev. Endocrinol. 9, 205–215 (2013)PubMed PubMedCentral CrossRef
    166.J.A. Janovick, M.D. Stewart, D. Jacob, L.D. Martin, J.M. Deng, C.A. Stewart, Y. Wang, A. Cornea, L. Chavali, S. Lopez, S. Mitalipov, E. Kang, H.S. Lee, P.R. Manna, D.M. Stocco, R.R. Behringer, P.M. Conn, Restoration of testis function in hypogonadotropic hypogonadal mice harboring a misfolded GnRHR mutant by pharmacoperone drug therapy. Proc. Natl. Acad. Sci. 110, 21030–21035 (2013)PubMed PubMedCentral CrossRef
    167.C. Feart, V. Pallet, C. Boucheron, D. Higueret, S. Alfos, L. Letenneur, J.F. Dartigues, P. Higueret, Aging affects the retinoic acid and the triiodothyronine nuclear receptor mRNA expression in human peripheral blood mononuclear cells. Eur. J. Endocrinol. 152, 449–458 (2005)PubMed CrossRef
    168.K. Ono, M. Yamada, Vitamin A and Alzheimer’s disease. Geriatr. Gerontol. Int. 12, 180–188 (2012)PubMed CrossRef
    169.M.V. Blagosklonny, J. Campisi, D.A. Sinclair, A. Bartke, M.A. Blasco, W.M. Bonner, V.A. Bohr, R.M. Brosh Jr, A. Brunet, R.A. Depinho, L.A. Donehower, C.E. Finch, T. Finkel, M. Gorospe, A.V. Gudkov, M.N. Hall, S. Hekimi, S.L. Helfand, J. Karlseder, C. Kenyon, G. Kroemer, V. Longo, A. Nussenzweig, H.D. Osiewacz, D.S. Peeper, T.A. Rando, K.L. Rudolph, P. Sassone-Corsi, M. Serrano, N.E. Sharpless, V.P. Skulachev, J.L. Tilly, J. Tower, E. Verdin, J. Vijg, Impact papers on aging in 2009. Aging 2, 111–121 (2010)PubMed PubMedCentral
    170.M.L. Batrinos, The aging of the endocrine hypothalamus and its dependent endocrine glands. Hormones 11, 241–253 (2012)PubMed CrossRef
    171.N. Barzilai, D.M. Huffman, R.H. Muzumdar, A. Bartke, The critical role of metabolic pathways in aging. Diabetes 61, 1315–1322 (2012)PubMed PubMedCentral CrossRef
    172.D. Ortuno-Sahagun, M. Pallas, A.E. Rojas-Mayorquin, Oxidative stress in aging: advances in proteomic approaches. Oxid. Med. Cell. Longev. 2014, 1–18 (2014)CrossRef
    173.P.Y. Liu, P.Y. Takahashi, P.D. Roebuck, A. Iranmanesh, J.D. Veldhuis, Age-specific changes in the regulation of LH-dependent testosterone secretion: assessing responsiveness to varying endogenous gonadotropin output in normal men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R721–R728 (2005)PubMed CrossRef
    174.X. Wang, D.M. Stocco, The decline in testosterone biosynthesis during male aging: a consequence of multiple alterations. Mol. Cell. Endocrinol. 238, 1–7 (2005)PubMed CrossRef
    175.E. Makrantonaki, P. Schonknecht, A.M. Hossini, E. Kaiser, M.M. Katsouli, J. Adjaye, J. Schroder, C.C. Zouboulis, Skin and brain age together: the role of hormones in the ageing process. Exp. Gerontol. 45, 801–813 (2010)PubMed CrossRef
    176.A.T. Slominski, M.A. Zmijewski, C. Skobowiat, B. Zbytek, R.M. Slominski, J.D. Steketee, Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv. Anat. Embryol. Cell Biol. 212, 1–115 (2012)CrossRef
    177.M.C. Beattie, H. Chen, J. Fan, V. Papadopoulos, P. Miller, B.R. Zirkin, Aging and luteinizing hormone effects on reactive oxygen species production and DNA damage in rat leydig cells. Biol. Reprod. 88, 1–7 (2013)CrossRef
    178.L. Zhou, M.C. Beattie, C.Y. Lin, J. Liu, K. Traore, V. Papadopoulos, B.R. Zirkin, H. Chen, Oxidative stress and phthalate-induced down-regulation of steroidogenesis in MA-10 Leydig cells. Reprod. Toxicol. 42, 95–101 (2013)PubMed CrossRef
    179.G. Vitale, S. Salvioli, C. Franceschi, Oxidative stress and the ageing endocrine system. Nat. Rev. Endocrinol. 9, 228–240 (2013)PubMed CrossRef
    180.Y. Kong, S.E. Trabucco, H. Zhang, Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging. Interdiscip. Top. Gerontol. 39, 86–107 (2014)PubMed CrossRef
    181.B.A. Payne, P.F. Chinnery, Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim. Biophys. Acta (2015). doi:10.​1016/​j.​bbabio.​2015.​05.​022 PubMed PubMedCentral
    182.I. Rodrigues Siqueira, C. Fochesatto, I.L. da Silva Torres, C. Dalmaz, C. Alexandre Netto, Aging affects oxidative state in hippocampus, hypothalamus and adrenal glands of Wistar rats. Life Sci. 78, 271–278 (2005)PubMed CrossRef
    183.T. Diemer, J.A. Allen, K.H. Hales, D.B. Hales, Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology 144, 2882–2891 (2003)PubMed CrossRef
    184.A.S. Midzak, H. Chen, V. Papadopoulos, B.R. Zirkin, Leydig cell aging and the mechanisms of reduced testosterone synthesis. Mol. Cell. Endocrinol. 299, 23–31 (2009)PubMed CrossRef
    185.A. Slominski, J. Wortsman, Neuroendocrinology of the skin. Endocr. Rev. 21, 457–487 (2000)PubMed
    186.P.M. Elias, J.S. Wakefield, Therapeutic implications of a barrier-based pathogenesis of atopic dermatitis. Clin. Rev. Allergy Immunol. 41, 282–295 (2011)PubMed PubMedCentral CrossRef
    187.D.D. Bikle, Vitamin D and the skin: physiology and pathophysiology. Rev. Endocr. Metab. Disord. 13, 3–19 (2012)PubMed PubMedCentral CrossRef
    188.A. Slominski, J. Wortsman, D.J. Tobin, The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. FASEB. J. 19, 176–194 (2005)PubMed CrossRef
    189.A. Slominski, B. Zbytek, A. Szczesniewski, I. Semak, J. Kaminski, T. Sweatman, J. Wortsman, CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH. Am. J. Physiol. Endocrinol. Metab. 288, E701–E706 (2005)PubMed CrossRef
    190.A.T. Slominski, M.A. Zmijewski, B. Zbytek, D.J. Tobin, T.C. Theoharides, J. Rivier, Key Role of CRF in the skin stress response system. Endocr. Rev. 34, 827–884 (2013)PubMed PubMedCentral CrossRef
    191.A.T. Slominski, M.A. Zmijewski, I. Semak, B. Zbytek, A. Pisarchik, W. Li, J. Zjawiony, R.C. Tuckey, Cytochromes P450 and skin cancer: role of local endocrine pathways. Anticancer. Agents Med. Chem. 14, 77–96 (2014)PubMed PubMedCentral CrossRef
    192.A. Haegebarth, H. Clevers, Wnt signaling, lgr5, and stem cells in the intestine and skin. Am. J. Pathol. 174, 715–721 (2009)PubMed PubMedCentral CrossRef
    193.N. Cirillo, S.S. Prime, Keratinocytes synthesize and activate cortisol. J. Cell. Biochem. 112, 1499–1505 (2011)PubMed CrossRef
    194.T. Inoue, Y. Miki, K. Abe, M. Hatori, M. Hosaka, Y. Kariya, S. Kakuo, T. Fujimura, A. Hachiya, S. Honma, S. Aiba, H. Sasano, Sex steroid synthesis in human skin in situ: the roles of aromatase and steroidogenic acute regulatory protein in the homeostasis of human skin. Mol. Cell. Endocrinol. 362, 19–28 (2012)PubMed CrossRef
    195.A. Slominski, J. Zjawiony, J. Wortsman, I. Semak, J. Stewart, A. Pisarchik, T. Sweatman, J. Marcos, C. Dunbar, C.R. Tuckey, A novel pathway for sequential transformation of 7-dehydrocholesterol and expression of the P450scc system in mammalian skin. Eur. J. Biochem. 271, 4178–4188 (2004)PubMed PubMedCentral CrossRef
    196.P.M. Elias, D. Crumrine, A. Paller, M. Rodriguez-Martin, M.L. Williams, Pathogenesis of the cutaneous phenotype in inherited disorders of cholesterol metabolism: therapeutic implications for topical treatment of these disorders. Dermatoendocrinol 3, 100–106 (2011)PubMed PubMedCentral CrossRef
    197.S. Suomela, O. Elomaa, T. Skoog, R. Ala-aho, L. Jeskanen, J. Parssinen, L. Latonen, R. Grenman, J. Kere, V.M. Kahari, U. Saarialho-Kere, CCHCR1 is up-regulated in skin cancer and associated with EGFR expression. PLoS ONE 4, e6030 (2009)PubMed PubMedCentral CrossRef
    198.R.F. Hannen, A.E. Michael, A. Jaulim, R. Bhogal, J.M. Burrin, M.P. Philpott, Steroid synthesis by primary human keratinocytes; implications for skin disease. Biochem. Biophys. Res. Commun. 404, 62–67 (2011)PubMed CrossRef
    199.A.T. Slominski, P.R. Manna, R.C. Tuckey, Cutaneous glucocorticosteroidogenesis: securing local homeostasis and the skin integrity. Exp. Dermatol. 23, 369–374 (2014)PubMed PubMedCentral CrossRef
    200.N. Vernet, C. Dennefeld, C. Rochette-Egly, M. Oulad-Abdelghani, P. Chambon, N.B. Ghyselinck, M. Mark, Retinoic acid metabolism and signaling pathways in the adult and developing mouse testis. Endocrinology 147, 96–110 (2006)PubMed CrossRef
    201.M. Clagett-Dame, D. Knutson, Vitamin A in reproduction and development. Nutrients 3, 385–428 (2011)PubMed PubMedCentral CrossRef
    202.J. Gericke, J. Ittensohn, J. Mihaly, S. Alvarez, R. Alvarez, D. Torocsik, A.R. de Lera, R. Ruhl, Regulation of retinoid-mediated signaling involved in skin homeostasis by RAR and RXR agonists/antagonists in mouse skin. PLoS ONE 8, e62643 (2013)PubMed PubMedCentral CrossRef
    203.S. Mukherjee, A. Date, V. Patravale, H.C. Korting, A. Roeder, G. Weindl, Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin. Interv. Aging 1, 327–348 (2006)PubMed PubMedCentral CrossRef
    204.J.P. Ortonne, Retinoid therapy of pigmentary disorders. Dermatol. Ther. 19, 280–288 (2006)PubMed CrossRef
    205.P.L. So, M.A. Fujimoto, E.H. Epstein Jr, Pharmacologic retinoid signaling and physiologic retinoic acid receptor signaling inhibit basal cell carcinoma tumorigenesis. Mol. Cancer Ther. 7, 1275–1284 (2008)PubMed PubMedCentral CrossRef
    206.J. Mihaly, A. Gamlieli, M. Worm, R. Ruhl, Decreased retinoid concentration and retinoid signalling pathways in human atopic dermatitis. Exp. Dermatol. 20, 326–330 (2011)PubMed CrossRef
    207.S.S. Chung, D.J. Wolgemuth, Role of retinoid signaling in the regulation of spermatogenesis. Cytogenet. Genome Res. 105, 189–202 (2004)PubMed PubMedCentral CrossRef
    208.M. Mark, N.B. Ghyselinck, P. Chambon, Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu. Rev. Pharmacol. Toxicol. 46, 451–480 (2006)PubMed CrossRef
    209.J.K. Wickenheisser, V.L. Nelson-DeGrave, K.L. Hendricks, R.S. Legro, J.F. Strauss 3rd, J.M. McAllister, Retinoids and retinol differentially regulate steroid biosynthesis in ovarian theca cells. isolated from normal cycling women and women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 90, 4858–4865 (2005)PubMed CrossRef
    210.P. Tucci, E. Cione, G. Genchi, Retinoic acid-induced testosterone production and retinoylation reaction are concomitant and exhibit a positive correlation in Leydig (TM-3) cells. J. Bioenerg. Biomembr. 40, 111–115 (2008)PubMed CrossRef
    211.K. Itoh, Y. Hiromori, N. Kato, I. Yoshida, N. Itoh, M. Ike, H. Nagase, K. Tanaka, T. Nakanishi, Placental steroidogenesis in rats is independent of signaling pathways induced by retinoic acids. Gen. Comp. Endocrinol. 163, 285–291 (2009)PubMed CrossRef
    212.E. Munetsuna, Y. Hojo, M. Hattori, H. Ishii, S. Kawato, A. Ishida, S.A. Kominami, T. Yamazaki, Retinoic acid stimulates 17beta-estradiol and testosterone synthesis in rat hippocampal slice cultures. Endocrinology 150, 4260–4269 (2009)PubMed CrossRef
    213.A. Kushida, H. Tamura, Retinoic acids induce neurosteroid biosynthesis in human glial GI-1 Cells via the induction of steroidogenic genes. J. Biochem. 146, 917–923 (2009)PubMed CrossRef
  • 作者单位:Pulak R. Manna (1)
    Cloyce L. Stetson (2)
    Andrzej T. Slominski (3)
    Kevin Pruitt (1)

    1. Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
    2. Department of Dermatology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
    3. Department of Dermatology, VA Medical Center, University of Alabama Birmingham, Birmingham, AL, 35294, USA
  • 刊物主题:Endocrinology; Diabetes; Internal Medicine; Science, general;
  • 出版者:Springer US
  • ISSN:1559-0100
文摘
Steroid hormones are an important class of regulatory molecules that are synthesized in steroidogenic cells of the adrenal, ovary, testis, placenta, brain, and skin, and influence a spectrum of developmental and physiological processes. The steroidogenic acute regulatory protein (STAR) predominantly mediates the rate-limiting step in steroid biosynthesis, i.e., the transport of the substrate of all steroid hormones, cholesterol, from the outer to the inner mitochondrial membrane. At the inner membrane, cytochrome P450 cholesterol side chain cleavage enzyme cleaves the cholesterol side chain to form the first steroid, pregnenolone, which is converted by a series of enzymes to various steroid hormones in specific tissues. Both basic and clinical evidence have demonstrated the crucial involvement of the STAR protein in the regulation of steroid biosynthesis. Multiple levels of regulation impinge on STAR action. Recent findings demonstrate that hormone-sensitive lipase, through its action on the hydrolysis of cholesteryl esters, plays an important role in regulating STAR expression and steroidogenesis which involve the liver X receptor pathway. Activation of the latter influences macrophage cholesterol efflux that is a key process in the prevention of atherosclerotic cardiovascular disease. Appropriate regulation of steroid hormones is vital for proper functioning of many important biological activities, which are also paramount for geriatric populations to live longer and healthier. This review summarizes the current level of understanding on tissue-specific and hormone-induced regulation of STAR expression and steroidogenesis, and provides insights into a number of cholesterol and/or steroid coupled physiological and pathophysiological consequences.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700