Brief review: Theory and practice of minimal fresh gas flow anesthesia
详细信息    查看全文
  • 作者:Metha Brattwall MD ; PhD (1)
    Margareta Warrén-Stomberg PhD (2)
    Fredrik Hesselvik MD
    ; PhD (3)
    Jan Jakobsson MD
    ; PhD (3) (4)
  • 刊名:Canadian Journal of Anesthesia/Journal canadien d'anesth篓娄sie
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:59
  • 期:8
  • 页码:785-797
  • 全文大小:368KB
  • 参考文献:1. / Baxter AD. Low and minimal flow inhalational anaesthesia. Can J Anaesth 1997; 44: 643-52. CrossRef
    2. / Hargasser S, / Mielke L, / Entholzner E, / Hipp R. Anesthesia with low fresh gas flow in clinical routine use (German). Anasthesiol Intensivmed Notfallmed Schmerzther 1995; 30: 268-75. CrossRef
    3. / Baum JA, / Aitkenhead AR. Low-flow anaesthesia. Anaesthesia 1995; 50(Suppl): 37-44. CrossRef
    4. / Kleemann PP. The climatisation of anesthetic gases under conditions of high flow to low flow. Acta Anaesthesiol Belg 1990; 41: 189-200.
    5. / Branson RD, / Campbell RS, / Davis K, / Porembka DT. Anaesthesia circuits, humidity output, and mucociliary structure and function. Anaesth Intensive Care 1998; 26: 178-83.
    6. / Baum J, / Zuchner K, / Holscher U, / et al. Climatization of anesthetic gases using different breathing hose systems (German). Anaesthesist 2000; 49: 402-11. CrossRef
    7. / Bengtson JP, / Bengtsson A, / Stenqvist O. The circle system as a humidifier. Br J Anaesth 1989; 63: 453-7. CrossRef
    8. / Kleemann PP. Humidity of anaesthetic gases with respect to low flow anaesthesia. Anaesth Intensive Care 1994; 22: 396-408.
    9. / Bilgi M, / Goksu S, / Mizrak A, / et al. Comparison of the effects of low-flow and high-flow inhalational anaesthesia with nitrous oxide and desflurane on mucociliary activity and pulmonary function tests. Eur J Anaesthesiol 2011; 28: 279-83.
    10. / Heidvall M, / Hein A, / Davidson S, / Jakobsson J. Cost comparison between three different general anaesthetic techniques for elective arthroscopy of the knee. Acta Anaesthesiol Scand 2000; 44: 157-62. CrossRef
    11. / Smith I, / Terhoeve PA, / Hennart D, / et al. A multicentre comparison of the costs of anaesthesia with sevoflurane or propofol. Br J Anaesth 1999; 83: 564-70. CrossRef
    12. / Dolk A, / Cannerfelt R, / Anderson RE, / Jakobsson J. Inhalation anaesthesia is cost-effective for ambulatory surgery: a clinical comparison with propofol during elective knee arthroscopy. Eur J Anaesthesiol 2002; 19: 88-92.
    13. / Eger EI, / White PF, / Bogetz MS. Clinical and economic factors important to anaesthetic choice for day-case surgery. Pharmacoeconomics 2000; 17: 245-62. CrossRef
    14. / Weiskopf RB, / Eger EI 2nd. Comparing the costs of inhaled anesthetics. Anesthesiology 1993; 79: 1413-8. CrossRef
    15. / Ekbom K, / Assareh H, / Anderson RE, / Jakobsson JG. The effects of fresh gas flow on the amount of sevoflurane vaporized during 1 minimum alveolar concentration anaesthesia for day surgery: a clinical study. Acta Anaesthesiol Scand 2007; 51: 290-3. CrossRef
    16. / Lindqvist M, / Jakobsson J. Minimal flow anaesthesia for short elective day case surgery; high vaporiser settings are needed but still cost-effective. Ambul Surg 2011; 17: 27-9.
    17. / Doolke A, / Cannerfelt R, / Anderson R, / Jakobsson J. The effects of lowering fresh gas flow during sevoflurane anaesthesia: a clinical study in patients having elective knee arthroscopy. Ambul Surg 2001; 9: 95-8. CrossRef
    18. / Ryu HG, / Lee JH, / Lee KK, / et al. The effect of low fresh gas flow rate on sevoflurane consumption. Korean J Anesthesiol 2011; 60: 75-7. CrossRef
    19. / Marx T. Pollution of the work environment by volatile anesthetics and nitrous oxide (German). Anasthesiol Intensivmed Notfallmed Schmerzther 1997; 32: 532-40. CrossRef
    20. / Hall JE, / Henderson KA, / Oldham TA, / Pugh S, / Harmer M. Environmental monitoring during gaseous induction with sevoflurane. Br J Anaesth 1997; 79: 342-5. CrossRef
    21. / Schebesta K, / Lorenz V, / Schebesta EM, / et al. Exposure to anaesthetic trace gases during general anaesthesia: CobraPLA vs. LMA classic. Acta Anaesthesiol Scand 2010; 54: 848-54. CrossRef
    22. / Lukaszewski M, / Kubler A, / Durek G. Spectrophotometric evaluation of nitrous oxide pollution in the work place of the anesthesiologic personnel in operating rooms (Polish). Pol Merkur Lekarski 2004; 17: 438-42.
    23. / Langbein T, / Sonntag H, / Trapp D, / et al. Volatile anaesthetics and the atmosphere: atmospheric lifetimes and atmospheric effects of halothane, enflurane, isoflurane, desflurane and sevoflurane. Br J Anaesth 1999; 82: 66-73. CrossRef
    24. / Parker NW, / Behringer EC. Nitrous oxide: a global toxicological effect to consider. Anesthesiology 2009; 110: 1195. CrossRef
    25. / Ishizawa Y. Special article: general anesthetic gases and the global environment. Anesth Analg 2011; 112: 213-7. CrossRef
    26. / Ryan SM, / Nielsen CJ. Global warming potential of inhaled anesthetics: application to clinical use. Anesth Analg 2010; 111: 92-8.
    27. / Janchen J, / Bruckner JB, / Stach H. Adsorption of desflurane from the scavenging system during high-flow and minimal-flow anaesthesia by zeolites. Eur J Anaesthesiol 1998; 15: 324-9.
    28. / Doyle DJ, / Byrick R, / Filipovic D, / Cashin F. Silica zeolite scavenging of exhaled isoflurane: a preliminary report. Can J Anesth 2002; 49: 799-804. CrossRef
    29. / Barton F, / Nunn JF. Totally closed circuit nitrous oxide/oxygen anaesthesia. Br J Anaesth 1975; 47: 350-7. CrossRef
    30. / Bengtson JP, / Sonander H, / Stenqvist O. Gaseous homeostasis during low-flow anaesthesia. Acta Anaesthesiol Scand 1988; 32: 516-21. CrossRef
    31. / Morita S, / Latta W, / Hambro K, / Snider MT. Accumulation of methane, acetone, and nitrogen in the inspired gas during closed-circuit anesthesia. Anesth Analg 1985; 64: 343-7. CrossRef
    32. / Versichelen L, / Rolly G, / Vermeulen H. Accumulation of foreign gases during closed-system anaesthesia. Br J Anaesth 1996; 76: 668-72. CrossRef
    33. / Ziemann-Gimmel P, / Schwartz DE. Increased carboxyhemoglobin in a patient with a large retroperitoneal hematoma. Anesth Analg 2004; 99: 1800-2. CrossRef
    34. / Mortier E, / Rolly G, / Versichelen L. Methane influences infrared technique anesthetic agent monitors. J Clin Monit Comput 1998; 14: 85-8. CrossRef
    35. / Mortier E, / Struys M, / Versichelen L, / Rolly G. Influence of methane on infrared gas analysis of volatile anesthetics. Acta Anaesthesiol Belg 1999; 50: 119-23.
    36. / Mazze RI. Composition of CO(2) absorbents. Anesth Analg 2001; 92: 1356-7. CrossRef
    37. / Struys MM, / Bouche MP, / Rolly G, / et al. Production of compound A and carbon monoxide in circle systems: an in vitro comparison of two carbon dioxide absorbents. Anaesthesia 2004; 59: 584-9. CrossRef
    38. / Higuchi H, / Adachi Y, / Arimura S, / Kanno M, / Satoh T. The carbon dioxide absorption capacity of Amsorb is half that of soda lime. Anesth Analg 2001; 93: 221-5. CrossRef
    39. / Kharasch ED, / Powers KM, / Artru AA. Comparison of Amsorb?, sodalime, and Baralyme? degradation of volatile anesthetics and formation of carbon monoxide and compound A in swine in vivo. Anesthesiology 2002; 96: 173-82. CrossRef
    40. / Yasuda N, / Lockhart SH, / Eger EI 2nd, / et al. Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology 1991; 74: 489-98. CrossRef
    41. / Lockhart SH, / Cohen Y, / Yasuda N, / et al. Cerebral uptake and elimination of desflurane, isoflurane, and halothane from rabbit brain: an in vivo NMR study. Anesthesiology 1991; 74: 575-80. CrossRef
    42. / Rehberg B, / Bouillon T, / Zinserling J, / Hoeft A. Comparative pharmacodynamic modeling of the electroencephalography-slowing effect of isoflurane, sevoflurane, and desflurane. Anesthesiology 1999; 91: 397-405. CrossRef
    43. / Kreuer S, / Bruhn J, / Wilhelm W, / Bouillon T. Pharmacokinetic-pharmacodynamic models for inhaled anaesthetics (German). Anaesthesist 2007; 56: 538-56. CrossRef
    44. / Molloy ME, / Buggy DJ, / Scanlon P. Propofol or sevoflurane for laryngeal mask airway insertion. Can J Anesth 1999; 46: 322-6. CrossRef
    45. / Siddik-Sayyid SM, / Aouad MT, / Taha SK, / et al. A comparison of sevoflurane-propofol versus sevoflurane or propofol for laryngeal mask airway insertion in adults. Anesth Analg 2005; 100: 1204-9. CrossRef
    46. / Ti LK, / Chow MY, / Lee TL. Comparison of sevoflurane with propofol for laryngeal mask airway insertion in adults. Anesth Analg 1999; 88: 908-12.
    47. / El-Radaideh KM, / Al-Ghazo MA. Single breath vital capacity induction of anesthesia with 8% sevoflurane versus intravenous propofol for laryngeal tube insertion in adults. Saudi Med J 2007; 28: 36-40.
    48. / Sloan MH, / Conard PF, / Karsunky PK, / Gross JB. Sevoflurane versus isoflurane: induction and recovery characteristics with single-breath inhaled inductions of anesthesia. Anesth Analg 1996; 82: 528-32.
    49. / Shao G, / Zhang G. Comparison of propofol and sevoflurane for laryngeal mask airway insertion in elderly patients. South Med J 2007; 100: 360-5. CrossRef
    50. / Liu SJ, / Li Y, / Sun B, / et al. A comparison between vital capacity induction and tidal breathing induction techniques for the induction of anesthesia and compound A production. Chin Med J (Engl) 2010; 123: 2336-40.
    51. / Topuz D, / Postaci A, / Sacan O, / Yildiz N, / Dikmen B. A comparison of sevoflurane induction versus propofol induction for laryngeal mask airway insertion in elderly patients. Saudi Med J 2010; 31: 1124-9.
    52. / Wrigley SR, / Fairfield JE, / Jones RM, / Black AE. Induction and recovery characteristics of desflurane in day case patients: a comparison with propofol. Anaesthesia 1991; 46: 615-22. CrossRef
    53. / Bennett JA, / Mahadeviah A, / Stewart J, / Lingaraju N, / Keykhah MM. Desflurane controls the hemodynamic response to surgical stimulation more rapidly than isoflurane. J Clin Anesth 1995; 7: 288-91. CrossRef
    54. / Avramov MN, / Griffin JD, / White PF. The effect of fresh gas flow and anesthetic technique on the ability to control acute hemodynamic responses during surgery. Anesth Analg 1998; 87: 666-70.
    55. / De Baerdemaeker LE, / Struys MM, / Jacobs S, / et al. Optimization of desflurane administration in morbidly obese patients: a comparison with sevoflurane using an ‘inhalation bolus-technique. Br J Anaesth 2003; 91: 638-50. CrossRef
    56. / Kilic M, Warren Stromberg M,? / Jakobsson J. Clinical performance of a novel main-stream anaesthetic end-tidal gas monitors during routine low flow anaesthesia. J Anesthe Clinic Res 2010; DOI:10.4172/2155-6148.1000112
    57. / Baum J, / Berghoff M, / Stanke HG, / Petermeyer M, / Kalff G. Low-flow anesthesia with desflurane (German). Anaesthesist 1997; 46: 287-93. CrossRef
    58. / Brewis RA. Oxygen toxicity during artificial ventilation. Thorax 1969; 24: 656-66. CrossRef
    59. / Demchenko IT, / Welty-Wolf KE, / Allen BW, / Piantadosi CA. Similar but not the same: normobaric and hyperbaric pulmonary oxygen toxicity, the role of nitric oxide. Am J Physiol Lung Cell Mol Physiol 2007; 293: L229-38. CrossRef
    60. / Rincon DA, / Valero JF. Supplemental oxygen for the prevention of postoperative nausea and vomiting: a meta-analysis of randomized clinical trials (Spanish). Rev Esp Anestesiol Reanim 2008; 55: 101-9.
    61. / Orhan-Sungur M, / Kranke P, / Sessler D, / Apfel CC. Does supplemental oxygen reduce postoperative nausea and vomiting? A meta-analysis of randomized controlled trials. Anesth Analg 2008; 106: 1733-8. CrossRef
    62. / Qadan M, / Ak?a O, / Mahid SS, / Hornung CA, / Polk HC Jr. Perioperative supplemental oxygen therapy and surgical site infection: a meta-analysis of randomized controlled trials. Arch Surg 2009; 144: 359-66. CrossRef
    63. / Brar MS, / Brar SS, / Dixon E. Perioperative supplemental oxygen in colorectal patients: a meta-analysis. J Surg Res 2011; 166: 227-35. CrossRef
    64. / Meyhoff CS, / Wetterslev J, / Jorgensen LN, / PROXI Trial Group, / et al. Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA 2009; 302: 1543-50. CrossRef
    65. / Chambers AC, / Leaper DJ. Role of oxygen in wound healing: a review of evidence. J Wound Care 2011; 20: 160-4.
    66. / Canet J, / Belda FJ. Perioperative hyperoxia: the debate is only getting started. Anesthesiology 2011; 114: 1271-3. CrossRef
    67. / Staehr AK, / Meyhoff CS, / PROXI Trial Group. Inspiratory oxygen fraction and postoperative complications in obese patients: a subgroup analysis of the PROXI trial. Anesthesiology 2011; 114: 1313-9. CrossRef
    68. / Mapleson WW. The theoretical ideal fresh-gas flow sequence at the start of low-flow anaesthesia. Anaesthesia 1998; 53: 264-72. CrossRef
    69. / Ip-Yam PC, / Goh MH, / Chan YH, / Kong CF. Clinical evaluation of the Mapleson theoretical ideal fresh gas flow sequence at the start of low-flow anaesthesia with isoflurane, sevoflurane and desflurane. Anaesthesia 2001; 56: 160-4. CrossRef
    70. / Eriksson S, / Bredbacka S. Better gas anesthesia technique better for environment, economics and patients. Systematic improvement work gave results (Swedish). Lakartidningen 2011; 108: 1190-2.
    71. / Avidan MS, / Jacobsohn E, / Glick D, / BAG-RECALL Research Group, / et al. Prevention of intraoperative awareness in a high-risk surgical population. N Engl J Med 2011; 365: 591-600. CrossRef
    72. / Liu N, / Chazot T, / Hamada S, / et al. Closed-loop coadministration of propofol and remifentanil guided by bispectral index: a randomized multicenter study. Anesth Analg 2011; 112: 546-57. CrossRef
    73. / Schober P, / Loer SA. Closed system anaesthesia–historical aspects and recent developments. Eur J Anaesthesiol 2006; 23: 914-20. CrossRef
  • 作者单位:Metha Brattwall MD, PhD (1)
    Margareta Warrén-Stomberg PhD (2)
    Fredrik Hesselvik MD, PhD (3)
    Jan Jakobsson MD, PhD (3) (4)

    1. Department of Anesthesiology & Intensive care, Institution for clinical sciences, Sahlgrenska Academy, Gothenburg, Sweden
    2. Institute of Health and care Sciences, University of Gothenburg/the Sahlgrenska Academy, Gothenburg, Sweden
    3. Department of Anesthesiology and Intensive Care, Danderyd Hospital, 182 88, Danderyd, Stockholm, Sweden
    4. Department of Anaesthesia & Intensive Care, Institution for Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
文摘
Purpose The aim of this brief review is to provide an update on the theory regarding minimal fresh gas flow techniques for inhaled general anesthesia. The article also includes an update and discussion of the practical aspects associated with minimal-flow anesthesia, including the advantages, potential limitations, and safety considerations of this important anesthetic technique. Principal findings Reducing the fresh gas flow to?<?1 L·min? during maintenance of anesthesia is associated with several benefits. Enhanced preservation of temperature and humidity, cost savings through more efficient utilization of inhaled anesthetics, and environmental considerations are three key reasons to implement minimal-flow and closed-circuit anesthesia, although potential risks are hypoxic gas mixtures and inadequate depth of anesthesia. The basic elements of the related pharmacology need to be considered, especially pharmacokinetics of the inhaled anesthetics. The third-generation inhaled anesthetics, sevoflurane and desflurane, have low blood and low tissue solubility, which facilitates rapid equilibration between the alveolar and effect site (brain) concentrations and makes them ideally suited for low-flow techniques. The use of modern anesthetic machines designed for minimal-flow techniques, leak-free circle systems, highly efficient CO2 absorbers, and the common practice of utilizing on-line real-time multi-gas monitor, including essential alarm systems, allow for safe and cost-effective minimal-flow techniques during maintenance of anesthesia. The introduction of new anesthetic machines with built-in closed-loop algorithms for the automatic control of inspired oxygen and end-tidal anesthetic concentration will further enhance the feasibility of minimal-flow techniques. Conclusions With our modern anesthesia machines, reducing the fresh gas flow of oxygen to 0.3-0.5 L·min? and using third-generation inhaled anesthetics provide a reassuringly safe anesthetic technique. This environmentally friendly practice can easily be implemented for elective anesthesia; furthermore, it will facilitate cost savings and improve temperature homeostasis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700