Computational modelling of interruptional activities between transposable elements using grammars and the linear ordering problem
详细信息    查看全文
  • 作者:Lingling Jin ; Ian McQuillan
  • 关键词:Transposable elements ; Formal modelling ; Interruptional analysis ; Linear ordering problem ; Stochastic context ; free grammars
  • 刊名:Soft Computing - A Fusion of Foundations, Methodologies and Applications
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 页码:19-35
  • 全文大小:1,813 KB
  • 参考文献:Bastiani Medina SS, Castilla Valdez G (2012) Iterated local search for the linear ordering problem. Int J Comb Optim Probl Inform 3(1):12–20
    Batzer M, Deininger P, Hellmann-Blumberg U, Jurka J, Labuda D, Rubin C, Schmid C, Zietkiewicz E, Zuckerkandl E (1996) Standardized nomenclature for alu repeats. J Mol Evolut 42(1):3–6CrossRef
    Belancio V, Roy-Engel A, Deininger P (2010) All y’all need to know ’bout retroelements in cancer. In: Seminars in Cancer Biology, vol 20. Elsevier, pp 200–210
    Bergman CM, Quesneville H (2007) Discovering and detecting transposable elements in genome sequences. Brief Bioinform 8(6):382–392
    Caspi A, Pachter L (2006) Identification of transposable elements using multiple alignments of related genomes. Genome Res 16(2):260–270CrossRef
    Charon I, Hudry O (2006) A branch-and-bound algorithm to solve the linear ordering problem for weighted tournaments. Discrete Appl Mathematics 154(15):2097–2116MathSciNet CrossRef MATH
    Decani JS (1972) A branch and bound algorithm for maximum likelihood paired comparison ranking. Biometrika 59(1):131–135MathSciNet CrossRef
    de Koning AJ, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genetics 7(12):e1002,384CrossRef
    Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, CambridgeCrossRef MATH
    Feo TA, Resende MG (1995) Greedy randomized adaptive search procedures. J Global Optim 6(2):109–133MathSciNet CrossRef MATH
    Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genetics 5:103–107CrossRef
    Garey M, Johnson D (1979) Computers and intractability: a guide to the theory of NP completeness, vol 174. Freeman, San FranciscoMATH
    Giordano J, Ge Y, Gelfand Y, Abrusán G, Benson G, Warburton P (2007) Evolutionary history of mammalian transposons determined by genome-wide defragmentation. PLoS Comput Biol 3(7):e137CrossRef
    Glover F, Laguna M (2013) Tabu search. Springer, New York
    Gregory T (2005) The evolution of the genome. Academic Press, New York
    Hansen P, Mladenović N (2003) Variable neighborhood search. Springer, New YorkCrossRef
    Hopcroft JE (2008) Introduction to automata theory, languages, and computation. Pearson Education India, India
    Jones NC, Pevzner P (2004) An introduction to bioinformatics algorithms. MIT press, Cambridge
    Jurka J, Kapitonov V, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110(1–4):462–467CrossRef
    Kapitonov V, Jurkal J (1996) The age of alu subfamilies. J Mol Evolut 42(1):59–65CrossRef
    Kirkpatrick S, Vecchi M et al (1983) Optimization by simmulated annealing. Science 220(4598):671–680MathSciNet CrossRef MATH
    Korte B, Oberhofer W (1968) Zwei algorithmen zur lösung eines komplexen reihenfolgeproblems. Unternehmensforschung Oper Res Recherche Opérationnelle 12:217–231MATH
    Korte B, Oberhofer W (1970) Triangularizing input-output matrices and the structure of production. Eur Econ Rev 1(4):482–511CrossRef
    Kronmiller BA, Wise RP (2008) TEnest: automated chronological annotation and visualization of nested plant transposable elements. Plant Physiol 146(1):45–59CrossRef
    Laguna M, Marti R, Martí RC (2003) Scatter search: methodology and implementations in C, vol 24. Springer, New York
    Lander E, Linton L, Birren B, Nusbaum C, Zody M, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRef
    Lerat E (2009) Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity 104(6):520–533CrossRef
    Loureiro T, Camacho R, Vieira J, Fonseca NA (2013) Improving the performance of transposable elements detection tools. J Integr Bioinform 10(3):231
    Martí R, Reinelt G (2011) The linear ordering problem: exact and heuristic methods in combinatorial optimization, vol 175. Springer, New York
    Martí R, Reinelt G, Duarte A (2012) A benchmark library and a comparison of heuristic methods for the linear ordering problem. Comput Optim Appl 51(3):1297–1317MathSciNet CrossRef MATH
    McClintock B (1951) Chromosome organization and genic expression. In: Cold spring harbor symposia on quantitative biology, vol 16. Cold Spring Harbor Laboratory Press, pp 13–47
    Schiavinotto T, Stützle T (2004) The linear ordering problem: instances, search space analysis and algorithms. J Mathematical Model Algorithms 3(4):367–402CrossRef MATH
    Smit A, Toth G, Riggs A, Jurka J (1995) Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mole Biol 246(3):401–417CrossRef
    Smit AFA, Hubley R, Green P (2013–2015) RepeatMasker Open-4.0. http://​www.​repeatmasker.​org
    Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O et al (2007) A unified classification system for Eukaryotic transposable elements. Nature Rev Genetics 8(12):973–982CrossRef
  • 作者单位:Lingling Jin (1)
    Ian McQuillan (1)

    1. Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
  • 刊物类别:Engineering
  • 刊物主题:Numerical and Computational Methods in Engineering
    Theory of Computation
    Computing Methodologies
    Mathematical Logic and Foundations
    Control Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-7479
文摘
Transposable elements (TEs) are DNA sequences that can either move or copy themselves to new positions within a genome. They constitute approximately 45 % of the human genome. Knowing the evolution of TEs is helpful in understanding the activities of these elements and their impacts on genomes. In this paper, we devise a formal model providing notations/definitions that are compatible with biological nomenclature, while still providing a suitable formal foundation for computational analysis. We define sequential interruptions between TEs that occur in a genomic sequence to estimate how often TEs interrupt other TEs, useful in predicting their ages. We also describe the problem in terms of a matrix problem—the linear ordering problem. We then define the recursive interruption context-free grammar to capture the recursive nature in which TEs nest themselves into other TEs, and associate probabilities to convert the context-free grammar into a stochastic context-free grammar, as well as discuss how to use the CYK algorithm to find a most likely parse tree predicting TE nesting. We also discuss improvements on the theoretical model and adjust the parse trees to capture both sequential and recursive interruptional activities between TEs and obtain more standard evolutionary trees. Keywords Transposable elements Formal modelling Interruptional analysis Linear ordering problem Stochastic context-free grammars

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700