The Extended Non-affine Tube Model for Crosslinked Polymer Networks: Physical Basics, Implementation, and Application to Thermomechanical Finite Element Analyses
详细信息    查看全文
  • 关键词:Continuum damage ; Elastomers ; Finite element analysis ; Hyperelasticity ; Temperature dependency ; Tube model ; Viscoelasticity
  • 刊名:Advances in Polymer Science
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:275
  • 期:1
  • 页码:1-70
  • 全文大小:1,542 KB
  • 参考文献:1.Behnke R, Dal H, Geißler G, Näser B, Netzker C, Kaliske M (2013) Macroscopical modeling and numerical simulation for the characterization of crack and durability properties of particle-reinforced elastomers. In: Grellmann W, Heinrich G, Kaliske M, Klüppel M, Schneider K, Vilgis T (eds) Fracture mechanics and statistical mechanics of reinforced elastomeric blends. Lecture notes in applied and computational mechanics, vol 70. Springer, Berlin, pp 167–226
    2.Kaliske M, Behnke R (2015) Material laws of rubbers. In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin, pp 1187–1197CrossRef
    3.Grambow A (2002) Determination of material parameters for filled rubber depending on time, temperature and loading condition. Ph.D. Thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Germany
    4.Heinrich G, Straube E, Helmis G (1988) Rubber elasticity of polymer networks: theories. Adv Polym Sci 85:33–87CrossRef
    5.Edwards S, Vilgis T (1988) The tube model theory of rubber elasticity. Rep Prog Phys 51:243–297CrossRef
    6.Valanis K, Landel R (1967) The strain-energy function of a hyperelastic material in terms of the extension ratios. J Appl Phys 38:2997–3002CrossRef
    7.Heinrich G, Kaliske M (1997) Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity. Comput Theor Polym Sci 7:227–241CrossRef
    8.Kaliske M, Heinrich G (1999) An extended tube-model for rubber elasticity: statistical-mechanical theory and finite element implementation. Rubber Chem Technol 72:602–632CrossRef
    9.Bergström J (2015) Mechanics of solid polymers. Theory and computational modeling. Elsevier, San Diego
    10.Klüppel M, Schramm J (2000) A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems. Macromol Theory Simul 9:742–754CrossRef
    11.Klüppel M (2003) Hyperelasticity and stress softening of filler reinforced polymer networks. Macromol Symp Funct Netw Gels 200:31–44CrossRef
    12.Heinrich G, Straube E (1987) A theory of topological constraints in polymer networks. Polym Bull 17:247–253
    13.Heinrich G, Straube E (1984) On the strength and deformation dependence of tube-like topological constraints in polymer networks, melts and concentrated solutions I. The polymer network case. Acta Polym 34:589–594CrossRef
    14.Heinrich G, Straube E (1984) On the strength and deformation dependence of tube-like topological constraints in polymer networks, melts and concentrated solutions II. Polymer melts and concentrated solutions. Acta Polym 35:115–119CrossRef
    15.Edwards S (1965) The statistical mechanics of polymers with excluded volume. Proc Phys Soc 85:613–624CrossRef
    16.Edwards S, Vilgis T (1986) The effect of entanglements in rubber elasticity. Polymer 27:483–492CrossRef
    17.Freed K (1972) Functional integrals and polymer statistics. Adv Chem Phys 22:1–128
    18.Treloar L (1975) The physics of rubber elasticity. Clarendon, Oxford
    19.Arruda E, Boyce M (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412CrossRef
    20.Marckmann G, Verron E (2006) Comparison of hyperelastic models for rubberlike materials. Rubber Chem Technol 79:835–858CrossRef
    21.Ogden R (1972) Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc A 326:565–584CrossRef
    22.Miehe C, Göktepe S, Lulei F (2004) A micro-macro approach to rubber-like materials. Part I: The non-affine micro-sphere model of rubber elasticity. J Mech Phys Solids 52:2617–2660CrossRef
    23.Drozdov A, Dorfmann A (2002) Finite viscoelasticity of filled rubbers: the effects of preloading and thermal recovery. Continuum Mech Thermodyn 14:337–361CrossRef
    24.Green M, Tobolsky A (1946) A new approach to the theory of relaxing polymeric media. J Chem Phys 14:80–92CrossRef
    25.Tanaka F, Edwards S (1992) Viscoelastic properties of physically crosslinked networks. Part 1. Non-linear stationary viscoelasticity. J Non-Newton Fluid Mech 43:247–271CrossRef
    26.Tanaka F, Edwards S (1992) Viscoelastic properties of physically crosslinked networks. Part 2. Dynamic mechanical moduli. J Non-Newton Fluid Mech 43:273–288CrossRef
    27.De Gennes P (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–579CrossRef
    28.Doi M, Edwards S (1986) The theory of polymer dynamics. Clarendon, Oxford
    29.Bergström J, Boyce M (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46:931–954CrossRef
    30.Dal H, Kaliske M (2009) Bergström-Boyce model for nonlinear finite rubber viscoelasticity: theoretical aspects and algorithmic treatment for the FE method. Comput Mech 44:809–823CrossRef
    31.Areias P, Matouš K (2008) Finite element formulation for modeling nonlinear viscoelastic elastomers. Comput Methods Appl Mech Eng 197:4702–4717CrossRef
    32.Miehe C, Göktepe S (2005) A micro-macro approach to rubber-like materials. Part II: The micro-sphere model of finite rubber viscoelasticity. J Mech Phys Solids 53:2231–2258CrossRef
    33.Wineman A (2009) Nonlinear viscoelastic solids – a review. Math Mech Solids 14:300–366CrossRef
    34.Freund M, Lorenz H, Juhre D, Ihlemann J, Klüppel M (2011) Finite element implementation of a microstructure-based model for filled elastomers. Int J Plast 27:902–919CrossRef
    35.Kaliske M (2000) A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput Methods Appl Mech Eng 185:225–243CrossRef
    36.Simo J (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60:153–173CrossRef
    37.Govindjee S, Simo J (1992) Mullins’ effect and the strain amplitude dependence of the storage modulus. Int J Solids Struct 29:1737–1751CrossRef
    38.Kaliske M, Rothert H (1997) Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput Mech 19:228–239CrossRef
    39.Lee E (1969) Elastic-plastic deformation at finite strains. J Appl Mech 36:1–6CrossRef
    40.Sidoroff F (1974) Un modèle viscoélastique nonlinéaire avec configuration intermédiaire. Journal de Mécanique 13:697–713
    41.Lubliner J (1985) A model of rubber viscoelasticity. Mech Res Commun 12:93–99CrossRef
    42.Simo J (1992) Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput Methods Appl Mech Eng 99:61–112CrossRef
    43.Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455–3482CrossRef
    44.Kachanov L (1986) Introduction to continuum damage mechanics. Martinus Nijhoff, DordrechtCrossRef
    45.Chaboche JL (1981) Continuous damage mechanics – a tool to describe phenomena before crack initiation. Nucl Eng Des 64:233–247CrossRef
    46.Chaboche JL (1988) Continuum damage mechanics: Part I – General concepts. Part II – Damage growth, crack initiation and crack growth. J Appl Mech 55:59–72CrossRef
    47.Lemaitre J (1984) How to use damage mechanics. Nucl Eng Des 80:233–245CrossRef
    48.Chagnon G, Verron E, Gornet L, Marckmann G, Charrier P (2004) On the relevance of continuum damage mechanics as applied to the Mullins effect in elastomers. J Mech Phys Solids 52:1627–1650CrossRef
    49.Simo J, Ju J (1987) Strain- and stress-based continuum damage models – II. Computational aspects. Int J Solids Struct 23:841–869CrossRef
    50.Simo J, Ju J (1987) Strain- and stress-based continuum damage models – I. Formulation. Int J Solids Struct 23:821–840CrossRef
    51.Kaliske M, Nasdala L, Rothert H (2001) On damage modelling for elastic and viscoelastic materials at large strain. Comput Struct 79:2133–2141CrossRef
    52.Nasdala L, Kaliske M, Rothert H, Becker A (1999) A realistic elastic damage model for rubber. In: Dorfmann A, Muhr A (eds) Constitutive models for rubber. Balkema, Rotterdam, pp 151–158
    53.Göktepe S, Miehe C (2005) A micro-macro approach to rubber-like materials. Part III: The micro-sphere model of anisotropic Mullins-type damage. J Mech Phys Solids 53:2259–2283CrossRef
    54.Flory P (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57:829–838CrossRef
    55.Simo J, Taylor R, Pister K (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51:177–208CrossRef
    56.Miehe C (1994) Aspects of the formulation and finite element implementation of large strain isotropic elasticity. Int J Numer Methods Eng 37:1981–2004CrossRef
    57.Simo J, Taylor R (1982) Penalty function formulations for incompressible nonlinear elastostatics. Comput Methods Appl Mech Eng 35:107–118CrossRef
    58.Dal H (2011) Approaches to the modeling of inelasticity and failure of rubberlike materials. Theory and numerics. Ph.D. Thesis, TU Dresden, Germany
    59.Miehe C (1995) Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials. Eur J Mech A/Solids 14:697–720
    60.Coleman B, Gurtin M (1967) Thermodynamics with internal state variables. J Chem Phys 47:597–613CrossRef
    61.Bonet J, Wood R (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge
    62.Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput Methods Appl Mech Eng 79:173–202CrossRef
    63.Wriggers P (2001) Nichtlineare Finite-Element-Methoden. Springer, BerlinCrossRef
    64.Reese S, Govindjee S (1998) Theoretical and numerical aspects in the thermoviscoelastic material behaviour of rubber-like polymers. Mech Time Dependent Mater 1:357–396CrossRef
    65.Heinrich G (1987) Thermoelasticity of tube-like constrained polymer networks. Acta Polym 38:637–638CrossRef
    66.Miehe C (1988) Zur numerischen Behandlung thermomechanischer Prozesse. Ph.D. Thesis, Universität Hannover, Germany
    67.Miehe C (1995) Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation. Comput Methods Appl Mech Eng 120:243–269CrossRef
    68.Lion A (1997) On the large deformation behaviour of reinforced rubber at different temperatures. J Mech Phys Solids 45:1805–1834CrossRef
    69.Lion A (1997) A physically based method to represent the thermo-mechanical behaviour of elastomers. Acta Mech 123:1–25CrossRef
    70.Bérardi G, Jaeger M, Martin R, Carpentier C (1996) Modelling of a thermoviscoelastic coupling for large deformations through finite element analysis. Int J Heat Mass Transfer 39:3911–3924CrossRef
    71.Allen G, Bianchi U, Price C (1963) Thermodynamics of elasticity of natural rubber. Trans Faraday Soc 59:2493–2502CrossRef
    72.Allen G, Kirkham M, Padget J, Price C (1971) Thermodynamics of rubber elasticity at constant volume. Trans Faraday Soc 67:1278–1292CrossRef
    73.Chadwick P (1974) Thermo-mechanics of rubberlike materials. Philos Trans R Soc Lond Ser A Math Phys Sci 276:371–403CrossRef
    74.Chadwick P, Creasy C (1984) Modified entropic elasticity of rubberlike materials. J Mech Phys Solids 32:337–357CrossRef
    75.Haupt P (1993) On the mathematical modelling of material behavior in continuum mechanics. Acta Mech 100:129–154CrossRef
    76.Morland L, Lee E (1960) Stress analysis for linear viscoelastic materials with temperature variation. Trans Soc Rheol 4:233–263CrossRef
    77.Holzapfel G, Simo J (1996) A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int J Solids Struct 33:3019–3034CrossRef
    78.Reese S (2003) A micromechanically motivated material model for the thermoviscoelastic material behaviour of rubber-like polymers. Int J Plast 19:909–940CrossRef
    79.Dippel B, Johlitz M, Lion A (2015) Thermo-mechanical couplings in elastomers – experiments and modelling. Zeitschrift für Angewandte Mathematik und Mechanik 95:1117–1128CrossRef
    80.Simo J, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98:41–104CrossRef
    81.Eterovic A, Bathe KJ (1990) A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Int J Numer Methods Eng 30:1099–1114CrossRef
    82.Behnke R (2015) Thermo-mechanical modeling and durability analysis of elastomer components under dynamic loading. Ph.D. Thesis, TU Dresden, Germany
    83.Felippa C, Park K (1980) Staggered transient analysis procedures for coupled mechanical systems: Formulation. Comput Methods Appl Mech Eng 24:61–111CrossRef
    84.Armero F, Simo J (1992) A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int J Numer Methods Eng 35:737–766CrossRef
    85.Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey
    86.Dal H, Kaliske M (2005) Q1P0
    ick element for thermomechanical analysis. Leipzig Annu Civil Eng Rep 10:105–115
    87.Zienkiewicz O, Taylor R (2000) The finite element method, vol 2; Solid mechanics, 5 edn. Butterworth-Heinmann, Oxford
    88.Simo J, Armero F, Taylor R (1993) Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput Methods Appl Mech Eng 110:359–386CrossRef
    89.Behnke R, Kaliske M, Klüppel M (2016) Thermo-mechanical analysis of cyclically loaded particle-reinforced elastomer components: Experiment and finite element simulation. Rubber Chem Technol 89:154–176CrossRef
    90.Behnke R, Dal H, Kaliske M (2011) An extended tube model for thermoviscoelasticity of rubberlike materials: theory and numerical implementation. In: Jerrams S, Murphy N (eds) Constitutive models for rubber VII. CRC, London, pp 87–92CrossRef
    91.Pottier T, Moutrille MP, Le Cam JB, Balandraud X, Grédiac M (2009) Study on the use of motion compensation techniques to determine heat sources. Application to large deformations on cracked rubber specimens. Exp Mech 49:561–574CrossRef
    92.Balandraud X, Toussaint E, Le Cam J, Grédiac M, Behnke R, Kaliske M (2011) Application of full-field measurements and numerical simulations to analyze the thermo-mechanical response of a three
    anch rubber specimen. In: Jerrams S, Murphy N (eds) Constitutive models for rubber VII. CRC, London, pp 45–50CrossRef
    93.Guélon T, Toussaint E, Le Cam JB, Promma N, Grédiac M (2009) A new characterisation method for rubber. Polym Test 28:715–723CrossRef
    94.Sutton M, Wolters W, Peters W, Ranson W, McNeil S (1983) Determination of displacements using an improved digital correlation method. Image Vis Computating 1:133–139CrossRef
    95.Sasso M, Palmieri G, Chiappini G, Amodio D (2008) Characterization of hyper-elastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polym Test 27:995–1004CrossRef
    96.Chevalier L, Calloch S, Hild F, Marco Y (2001) Digital image correlation used to analyze the multiaxial behavior of rubber-like materials. Eur J Mech A/Solids 2:169–187CrossRef
    97.Behnke R, Kaliske M (2014) Thermo-mechanical finite element analysis of steady state rolling off-the-road tires with respect to thermal damage. In: Proceedings international rubber conference, Beijing, 16–18 Sept 2014, pp 1455–1460
    98.Behnke R, Kaliske M (2015) Thermo-mechanically coupled investigation of steady state rolling tires by numerical simulation and experiment. Int J Non Linear Mech 68:101–131CrossRef
  • 作者单位:Ronny Behnke (22)
    Michael Kaliske (22)

    22. Institut für Statik und Dynamik der Tragwerke, Technische Universität Dresden, 01062, Dresden, Germany
  • 丛书名:Designing of Elastomer Nanocomposites: From Theory to Applications
  • ISBN:978-3-319-47696-4
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-5030
  • 卷排序:275
文摘
This chapter is devoted to a summary of the so-called extended non-affine tube model. First, general model approaches for representation of the behavior of elastomers within numerical simulations are discussed. Second, the extended non-affine tube model is considered in the context of hyperelastic material models. Starting from molecular-statistical considerations, a Helmholtz free energy function is derived and formulated in terms of continuum mechanical quantities of the macroscale. Furthermore, combination with a model approach to represent continuum damage and time-dependent effects is addressed. The free energy function of the model approach is further set into the context of thermomechanics to account for temperature-dependent behavior of elastomers within numerical simulations. Finally, finite element implementation of the extended non-affine tube model and its application to uniaxial and biaxial tension tests performed on elastomer specimens are presented.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700