A parameterized yet accurate model of ozone and water vapor transmittance in the solar-to-near-infrared spectrum
详细信息    查看全文
  • 作者:Weiyi Liu (1)
    Jinhuan Qiu (1)
  • 关键词:parameterization ; transmittance ; atmospheric absorption
  • 刊名:Advances in Atmospheric Sciences
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:29
  • 期:3
  • 页码:599-610
  • 全文大小:604KB
  • 参考文献:1. Berk, A., and Coauthors, 2004: MODTRAN5: A reformulated atmospheric band model with auxiliary species and practical multiple scattering options. Rep. BS-HA-TR-2004-1139, Air Force Geophys. Lab., Bedford, MA.
    2. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes, short communication. / Journal of Quantitative Spectroscopy and Radiative Transfer, 91, 233-44. CrossRef
    3. Collins, W. D., J. K. Hackney, and D. P. Edwards, 2002: An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model. / J. Geophys. Res., 107(D22), 4664, doi: 10.1029/2001JD001365. CrossRef
    4. Fu, Q., and K. Liou, 1992: A three-parameter approximation for radiative transfer in nonhomogeneous atmospheres: Application to the O3 9.6-μm band. / J. Geophys. Res., 97(D12), 13051-3058. CrossRef
    5. Harrison, L. C., J. J. Michalsky, and J. Berndt, 1994: Automated multifilter rotation shadowband radiometer: An instrument for optical depth and radiation measurements. / Appl. Opt., 33, 5188-125.
    6. Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. / Remote. Sens. Environ., 66, 1-6 CrossRef
    7. Kiehl, J. T., and S. Solomon, 1986: On the radiative balance of the stratosphere. / J. Atmos. Sci., 43, 1525-534. CrossRef
    8. Kneizys, F. X., and Coauthors, 1988: Users Guide to LOWTRAN 7. Rep. AFGL-TR-88-1077, Air Force Geophys. Lab., Bedford, MA, 137pp.
    9. Kratz, D. P., and R. D. Cess, 1988: Infrared radiation models for atmospheric ozone. / J. Geophys. Res., 93, 7047-054. CrossRef
    10. Liou, K. N., 2002: / An Introduction to Atmospheric Radiation. 2nd ed., Elsevier, 583pp.
    11. Mauldin, L. E. III, N. H. Zaun, M. P. McCormick, J. H. Guy, and W. R. Vaughn, 1985: Stratospheric Aerosol and Gas Experiment II instrument: A functional description. / Optical Engineering, 24, 307-12.
    12. Ou, S.-C., and K.-N. Liou, 1983: Parameterization of carbon dioxide 15μm band absorption and emission. / J. Geophys. Res., 88, 5203-207. CrossRef
    13. Rosenfield, J. E., 1991: A simple parameterization of ozone infrared absorption for atmospheric heating rate calculations. / J. Geophys. Res., 96(D5), 9065-074. CrossRef
    14. Rothman, L. S., and Coauthors, 2005: The HITRAN 2004 molecular spectroscopic database. / Journal of Quantitative Spectroscopy and Radiative Transfer, 96, 139-04. CrossRef
    15. Stamnes, K., S.-C. Tsay, W. J. Wiscombe, and K. Jayaweera, 1988: Numerical stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. / Apllied Optics, 27, 2502-509. CrossRef
    16. Yang, J. M., and J. H. Qiu, 2002: A method for estimating precipitable water and effective water vapor content from ground humidity parameters. / Chinese J. Atmos. Sci., 26, 9-2.
    17. Young, A. T., 1994: Air mass and refraction. / Applied Optics, 33, 1108-110. CrossRef
    18. Zhong, W. Y., and J. D. Haigh, 1995: Improved broadband emissivity parameterization for water vapor cooling rate calculations. / J. Atmos. Sci., 52, 124-38. CrossRef
  • 作者单位:Weiyi Liu (1)
    Jinhuan Qiu (1)

    1. Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
  • ISSN:1861-9533
文摘
A parameterized transmittance model (PTR) for ozone and water vapor monochromatic transmittance calculation in the solar-to-near-infrared spectrum 0.3- μm with a spectral resolution of 5 cm was developed based on the transmittance data calculated by Moderate-resolution Transmittance model (MODTRAN). Polynomial equations were derived to represent the transmittance as functions of path length and airmass for every wavelength based on the least-squares method. Comparisons between the transmittances calculated using PTR and MODTRAN were made, using the results of MODTRAN as a reference. Relative root-mean-square error (RMSre) was 0.823% for ozone transmittance. RMSre values were 8.84% and 3.48% for water vapor transmittance ranges of 1-1×108 and 1-1×10, respectively. In addition, the Stratospheric Aerosol and Gas Experiment II (SAGEII) ozone profiles and University of Wyoming (UWYO) water vapor profiles were applied to validate the applicability of PTR model. RMSre was 0.437% for ozone transmittance. RMSre values were 8.89% and 2.43% for water vapor transmittance ranges of 1-1×108 and 1-1×10, respectively. Furthermore, the optical depth profiles calculated using the PTR model were compared to the results of MODTRAN. Absolute RMS errors (RMSab) for ozone optical depths were within 0.0055 and 0.0523 for water vapor at all of the tested altitudes. Finally, the comparison between the solar heating rate calculated from the transmittance of PTR and Line-by-Line radiative transfer model (LBLRTM) was performed, showing a maximum deviation of 0.238 K d (6% of the corresponding solar heating rate calculated using LBLRTM). In the troposphere all of the deviations were within 0.08 K d. The computational speed of PTR model is nearly two orders of magnitude faster than that of MODTRAN.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700