Validation of the modified Becker’s split-window approach for retrieving land surface temperature from AVHRR
详细信息    查看全文
  • 作者:Weijun Quan ; Hongbin Chen ; Xiuzhen Han …
  • 关键词:LST ; split ; window approach ; MODTRAN ; AVHRR ; validation
  • 刊名:Journal of Meteorological Research
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:29
  • 期:5
  • 页码:823-836
  • 全文大小:2,926 KB
  • 参考文献:Becker, F., 1987: The impact of spectral emissivity on the measurement of land surface temperature from a satellite. Int. J. Remote Sens., 8, 1509-522.CrossRef
    Becker, F., and Li Zhaoliang, 1990: Towards a local split window method over land surfaces. Int. J. Remote Sens., 11, 369-93.CrossRef
    Berk, A., G. P. Anderson, P. K. Acharya, et al., 2003: MODTRAN4 Version 3 Revision 1 User’s Manual, Air Force Research Laborary, North Andover, MA, USA, 10-5.
    Coll, C., V. Caselles, J. A. Sobrino, et al., 1994: On the atmospheric dependence of the split-window equation for land surface temperature. Int. J. Remote Sens., 15, 105-22.CrossRef
    Coll, C., V. Caselles, J. M. Galve, et al., 2005: Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sens. Environ., 97, 288-00.CrossRef
    Coll, C., E. Valor, J. M. Galve, et al., 2012: Long-term accuracy assessment of land surface temperatures derived from the Advanced Along-Track Scanning Radiometer. Remote Sens. Environ., 116, 211-25.CrossRef
    Czajkowski, K. P., S. N. Goward, and H. Ouaidrari, 1998: Impact of AVHRR filter functions on surface temperature estimation from the split window approach. Int. J. Remote Sens., 19, 2007-012.CrossRef
    Diak, G. R., and M. S. Whipple, 1993: Improvements to models and methods for evaluating the land-surface energy balance and ‘effective-roughness using radiosonde reports and satellite-measured ‘skin-temperature data. Agric. Forest Meteor., 63, 189-18.CrossRef
    Duan, S. B., Z. L. Li, B. H. Tang, et al., 2014: Generation of a time-consistent land surface temperature product from MODIS data. Remote Sens. Environ., 140, 339-49.CrossRef
    Frey, C. M., C. Kuenzer, and S. Dech, 2012: Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005. Int. J. Remote Sens., 33, 7165-183.CrossRef
    Jiménez-Muoz, J. C., and J. A. Sobrino, 2003: A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res., 108, doi: 10.-029/-003JD003480 .
    Jiménez-Muoz, J. C., and J. A. Sobrino, 2006: Error sources on the land surface temperature retrieved from thermal infrared single channel remote sensing data. Int. J. Remote Sens., 27, 999-014.CrossRef
    Jiménez-Muoz, J. C., J. Cristobal, J. A. Sobrino, et al., 2009: Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE Trans. Geosci. Remote Sens., 47, 339-49.CrossRef
    Karnieli, A., N. Agam, R. T. Pinker, et al., 2010: Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Climate, 23, 618-33.CrossRef
    Kustas, W., and M. Anderson, 2009: Advances in thermal infrared remote sensing for land surface modeling. Agric. Forest Meteor., 149, 2071-081.CrossRef
    Li Zhaoliang, M. P. Stoll, Zhang Renhua, et al., 2001: On the separate retrieval of soil and vegetation temperatures from ATSR data. Sci. China (Ser. D), 44, 97-11.CrossRef
    Z. H. Li, B. H. Tang, H. Wu, et al., 2013a: Satellitederived land surface temperature: Current status and perspectives. Remote Sens. Environ., 131, 14-7.CrossRef
    Li, Z. L., H. Wu, N. Wang, et al., 2013b: Land surface emissivity retrieval from satellite data. Int. J. Remote Sens., 34, 3084-127.CrossRef
    Liu Yuanbo, T. Hiyama, Y. Yamaguchi, 2006: Scaling of land surface temperature using satellite data: A case examination on ASTER and MODIS products over a heterogeneous terrain area. Remote Sens. Environ., 105, 115-28.CrossRef
    Liu Yonghong, Niu Zheng, Xu Yongming, et al., 2006: Design of land cover classification system for China and its application research based on MODIS data. Trans. CSAE, 22, 99-04. (in Chinese)
    Neteler, M., 2010: Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens., 2, 333-51.CrossRef
    Ottlé, C., and D. Vidal-Madjar, 1992: Estimation of land surface temperature with NOAA9 data. Remote Sens. Environ., 40, 27-1.CrossRef
    Pinker, R. T., D. L. Sun, M. P. Hung, et al., 2009: Evaluation of satellite estimates of land surface temperature from GOES over the United States. J. Appl. Meteor. Climatol., 48, 167-80.CrossRef
    Prata, A. J., 1993: Land surface temperatures derived from the advanced very high resolution radiometer and the along-track scanning radiometer. 1: Theory. J. Geophys. Res., 98, 16689-6702.CrossRef
    Prata, A. J., 1994: Land surface temperature determination from satellites. Adv. Spac. Res., 14, 15-6.CrossRef
    Price, J. C., 1982: On the use of satellite data to infer surface fluxes at meteorological scales. J. Appl. Meteor., 21, 1111-122.CrossRef
    Qian, Y. G., Z. L. Li, and F. Nerry, 2013: Evaluation of land surface temperature and emissivities retrieved from MSG/SEVIRI data with MODIS land surface temperature and emissivity products. Int. J. Remote Se
  • 作者单位:Weijun Quan (1) (2)
    Hongbin Chen (1)
    Xiuzhen Han (3)
    Zhiqiang Ma (2)

    1. Key Laboratory for Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
    2. Environmental Meteorology Forecast Center of Beijing-Tianjin-Hebei, Beijing Meteorological Bureau, Beijing, 100089, China
    3. National Satellite Meteorological Center, China Meteorological Administration, Beijing, 100081, China
  • 刊物类别:Atmospheric Sciences; Meteorology; Geophysics and Environmental Physics; Atmospheric Protection/Air
  • 刊物主题:Atmospheric Sciences; Meteorology; Geophysics and Environmental Physics; Atmospheric Protection/Air Quality Control/Air Pollution;
  • 出版者:The Chinese Meteorological Society
  • ISSN:2198-0934
文摘
To further verify the modified Becker’s split-window approach for retrieving land surface temperature (LST) from long-term Advanced Very High Resolution Radiometer (AVHRR) data, a cross-validation and a radiance-based (R-based) validation are performed and examined in this paper. In the cross-validation, 3481 LST data pairs are extracted from the AVHRR LST product retrieved with the modified Becker’s approach and compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MYD11A1) for the period 2002-008, relative to the positions of 548 weather stations in China. The results show that in most cases, the AVHRR LST values are higher than the MYD11A1. When the AVHRR LSTs are adjusted with a linear regression, the values are close to the MYD11A1, showing a good linear relationship between the two datasets (R 2 = 0.91). In the R-based validation, comparison is made between AVHRR LST retrieved from the modified Becker’s approach and the inversed LST from the Moderate Resolution Transmittance Model (MODTRAN) consolidated with observed temperature and humidity profiles at four radiosonde stations. The results show that the retrieved AVHRR LST deviates from the MODTRAN inversed LST by-.3 (-.5) K when the total water vapor amount is less (larger) than 20 mm. This provides useful hints for further improvement of the LST retrieval algorithms-accuracy and consistency. Key words LST split-window approach MODTRAN AVHRR validation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700