A Monte Carlo study on tissue dose enhancement in brachytherapy: a comparison between gadolinium and gold nanoparticles
详细信息    查看全文
  • 作者:Mohammad Taghi Bahreyni Toossi (1)
    Mahdi Ghorbani (2)
    Mohammad Mehrpouyan (1)
    Fateme Akbari (1)
    Leila Sobhkhiz Sabet (1)
    Ali Soleimani Meigooni (3)
  • 关键词:Brachytherapy ; Dose enhancement ; Monte Carlo simulation ; Gadolinium nanoparticles ; Gold nanoparticles
  • 刊名:Australasian Physical & Engineering Sciences in Medicine
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:35
  • 期:2
  • 页码:177-185
  • 全文大小:559KB
  • 参考文献:1. Ranjbar H, Shamsaei M, Ghasemi MR (2010) Investigation of the dose enhancement factor of high intensity low mono-energetic X-ray radiation with labelled tissues by gold nanoparticles. Nukleonika 55(3):307-12
    2. Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C et al (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine 5(2):136-42 CrossRef
    3. Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y (2005) Nanoparticles enhance therapeutic efficiency by selectively increased local drug dose in experimental colitis in rats. J Pharmacol Exp Ther 315(1):196-02 CrossRef
    4. Iwamoto KS, Cochran ST, Winter J, Holburt E, Higashida RT, Norman A (1987) Radiation dose enhancement therapy with iodine in rabbit VX-2 brain tumors. Radiother Oncol 8(2):161-70 CrossRef
    5. Robar JL (2006) Generation and modelling of megavoltage photon beams for contrast-enhanced radiation therapy. Phys Med Biol 51(21):5487-504 CrossRef
    6. Leung MK, Chow JC, Chithrani BD, Lee MJ, Oms B, Jaffray DA (2011) Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys 38(2):624-31 CrossRef
    7. Zhang SX, Gao J, Buchholz TA, Wang Z, Salehpour MR, Drezek RA et al (2009) Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study. Biomed Microdevices 11(4):925-33 CrossRef
    8. Cho S, Jeong JH, Kim ChH, Yoon M (2010) Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy. J Korean Phys Soc 56(6):1754-758 CrossRef
    9. Aziz EF, Bugaj JE, Caglar G, Dinkelborg LM, Lawaczeck R (2006) Novel approach in radionuclide tumor therapy: dose enhancement by high Z-element contrast agents. Cancer Biother Radiopharm 21(3):181-93 CrossRef
    10. Lechtman E, Chattopadhyay N, Cai Z, Mashouf S, Reilly R, Pignol JP (2011) Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys Med Biol 56(15):4631-647 CrossRef
    11. Berbeco RI, Ngwa W, Makrigiorgos GM (2011) Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted gold nanoparticles; new potential for external beam radiotherapy. Int J Radiat Oncol Biol Phys 81(1):270-76 CrossRef
    12. McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT et al (2011) Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep 1:18 CrossRef
    13. Garnica-Garza HM (2010) A Monte Carlo comparison of three different media for contrast enhanced radiotherapy of the prostate. Technol Cancer Res Treat 9(3):271-78
    14. Regulla DF, Hieber LB, Seidenbusch M (1998) Physical and biological interface dose effects in tissue due to X-ray-induced release of secondary radiation from metallic gold surfaces. Radiat Res 150(1):92-00 CrossRef
    15. van den Heuvel F, Locquet JP, Nuyts S (2010) Beam energy considerations for gold nano-particle enhanced radiation treatment. Phys Med Biol 55(16):4509-520 CrossRef
    16. Sahoo S, Selvam TP, Vishwakarma RS, Chourasiya G (2010) Monte Carlo modeling of 60Co HDR brachytherapy source in water and in different solid water phantom materials. J Med Phys 35(1):15-2 CrossRef
    17. Browne E, Dairiki JM, Doebler RE (1978) Table of Isotopes, 7th edn, Lederer CM, Dhirley VS (eds), Wiley Inc., New York
    18. Medich DC, Munro JJ III (2007) Monte Carlo characterization of the M-19 high dose rate Iridium-192 brachytherapy source. Med Phys 34(6):1999-006 CrossRef
    19. Cazeca MJ, Medich DC, Munro JJ III (2010) Monte Carlo characterization of a new Yb-169 high dose rate source for brachytherapy application. Med Phys 37(3):1129-136 CrossRef
    20. Papagiannis P, Angelopoulos A, Pantelis E, Sakelliou L, Karaiskos P, Shimizu Y (2003) Monte Carlo dosimetry of 60Co HDR brachytherapy sources. Med Phys 30(4):712-21 CrossRef
    21. Dauffy LS, Braby LA, Berner BM (2005) Dosimetry of the 198Au source used in interstitial brachytherapy. Med Phys 32(6):1579-588 CrossRef
    22. Williamson JF, Li Z (1995) Monte Carlo aided dosimetry of the microselectron pulsed and high dose-rate 192Ir sources. Med Phys 22(6):809-19 CrossRef
    23. Medich DC, Tries MA, Munro JJ III (2006) Monte Carlo characterization of an ytterbium-169 high dose rate brachytherapy source with analysis of statistical uncertainty. Med Phys 33(1):163-72 CrossRef
    24. Waters LS (2000) MCNPX User’s Manual, Version 2.4.0. Report LA-CP-02-408, Los Alamos National Laboratory
    25. Bahreyni Toossi MT, Ghorbani M, Mowlavi AA, Taheri M, Layegh M, Makhdoumi Y et al (2010) Air kerma strength characterization of a GZP6 Cobalt-60 brachytherapy source. Rep Pract Oncol Radiother 15:190-94 CrossRef
    26. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS et al (2004) Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31:633-74 CrossRef
    27. Cristy M, Eckerman K (1987) Specific absorbed fractions of energy at various ages from internal photon sources, ORNL Report No. ORNL/TM-8381/VI, Oak Ridge
  • 作者单位:Mohammad Taghi Bahreyni Toossi (1)
    Mahdi Ghorbani (2)
    Mohammad Mehrpouyan (1)
    Fateme Akbari (1)
    Leila Sobhkhiz Sabet (1)
    Ali Soleimani Meigooni (3)

    1. Medical Physics Research Center, Medical Physics Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
    2. Vice Chancellery of Research and Technology, North Khorasan University of Medical Sciences, South Shariati No. 7, Bojnurd, 94149-53535, North Khorasan, Iran
    3. Comprehensive Cancer Center of Nevada, Las Vegas, NV, USA
  • ISSN:1879-5447
文摘
The aim of this study was to quantify the dose enhancement by gadolinium and gold nanoparticles in brachytherapy. MCNPX Monte Carlo code was used to simulate four brachytherapy sources: 60Co, 198Au, 192Ir, 169Yb. To verify the accuracy of our simulations, the obtained values of dose rate constants and radial dose functions were compared with corresponding published values for these sources. To study dose enhancements, a spherical soft tissue phantom with 15?cm in radius was simulated. Gadolinium and gold nanoparticles at 10, 20 and 30?mg/ml concentrations were separately assumed in a 1?×?1?×?1?cm3 volume simulating tumour. The simulated dose to the tumour with the impurity was compared to the dose without impurity, as a function of radial distance and concentration of the impurity, to determine the enhancement of dose due to the presence of the impurity. Dose enhancements in the tumour obtained in the presence of gadolinium and gold nanoparticles with concentration of 30?mg/ml, were found to be in the range of ?.5-06.1 and 0.4-53.1?% respectively. In addition, at higher radial distances from the source center, higher dose enhancements were observed. GdNPs can be used as a high atomic number material to enhance dose in tumour volume with dose enhancements up to 106.1?% when used in brachytherapy. Regardless considering the clinical limitations of the here-in presented model, for a similar source and concentration of nanoparticles, gold nanoparticles show higher dose enhancement than gadolinium nanoparticles and can have more clinical usefulness as dose enhancer material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700