Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications
详细信息    查看全文
  • 作者:Meisam Rahmani (1)
    Mohammad Taghi Ahmadi (1) (2)
    Hediyeh Karimi Feiz Abadi (3) (4)
    Mehdi Saeidmanesh (1)
    Elnaz Akbari (4)
    Razali Ismail (1)
  • 关键词:Trilayer graphene nanoribbon (TGN) ; ABA and ABC stacking ; TGN Schottky ; barrier FET ; High ; speed switch
  • 刊名:Nanoscale Research Letters
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:8
  • 期:1
  • 全文大小:1154KB
  • 参考文献:1. Mak KF, Shan J, Heinz TF: Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. / Phys Rev Lett 2010, 104:176404. CrossRef
    2. Rahmani M, Ahmadi MT, Kiani MJ, Ismail R: Monolayer graphene nanoribbon p-n junction. / J Nanoeng Nanomanuf 2012, 2:1-.
    3. Craciun MF, Russo S, Yamamoto M, Oostinga JB, Morpurgo AF, Tarucha S: Trilayer graphene is a semimetal with a gate-tunable band overlap. / Nat Nanotechnol 2009, 4:383-88. CrossRef
    4. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. / J Phys Chem B 2004, 108:19912-9916. CrossRef
    5. Nirmalraj PN, Lutz T, Kumar S, Duesberg GS, Boland JJ: Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. / Nano Letters 2011, 11:16-2. CrossRef
    6. Avetisyan AA, Partoens B, Peeters FM: Stacking order dependent electric field tuning of the band gap in graphene multilayers. / Phys Rev B 2010, 81:115432. CrossRef
    7. Warner JH: The influence of the number of graphene layers on the atomic resolution images obtained from aberration-corrected high resolution transmission electron microscopy. / Nanotechnology 2010, 21:255707. CrossRef
    8. Zhu W, Perebeinos V, Freitag M, Avouris P: Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. / Phys Rev B 2009, 80:235402. CrossRef
    9. Sutter P, Hybertsen MS, Sadowski JT, Sutter E: Electronic structure of few-layer epitaxial graphene on Ru(0001). / Nano Letters 2009, 9:2654-660. CrossRef
    10. Shengjun Y, Raedt HD, Katsnelson MI: Electronic transport in disordered bilayer and trilayer graphene. / Phys Rev B 2010, 82:235409. CrossRef
    11. Koshino M: Interlayer screening effect in graphene multilayers with ABA and ABC stacking. / Phys Rev B 2010, 81:125304. CrossRef
    12. Zhang F, Sahu B, Min H, MacDonald AH: Band structure of ABC-stacked graphene trilayers. / Phys Rev B 2010, 82:035409. CrossRef
    13. Lu CL, Lin HC, Hwang CC, Wang J, Lin MF, Chang CP: Absorption spectra of trilayer rhombohedral graphite. / Appl Phys Lett 2006, 89:221910. CrossRef
    14. Xiao YM, Xu W, Zhang YY, Peeters FM: Optoelectronic properties of ABC-stacked trilayer graphene. / Solid State Phys 2012, 250:86-4.
    15. Rutter GM, Crain J, Guisinger N, First PN, Stroscio JA: Optoelectronic properties of ABC-stacked trilayer graphene. / J Vac Sci Technol A 2008, 26:938-43. CrossRef
    16. Russo S, Craciun MF, Yamamoto M, Tarucha S, Morpurgo AF: Double-gated graphene-based devices. / Mesoscale Nanoscale Phys 2009, 11:095018.
    17. Koshino M, McCann E: Gate-induced interlayer asymmetry in ABA-stacked trilayer graphene. / Phys Rev B 2009, 79:125443. CrossRef
    18. Craciun MF, Russo S, Yamamoto M, Tarucha S: Tuneable electronic properties in graphene. / NanoToday Press 2011, 6:42-0. CrossRef
    19. Appenzeller J, Sui Y, Chen Z: Graphene nanostructures for device applications. In / Digest of Technical Papers on 2009 Symposium on VLSI Technology: June 16-8 2009; Honolulu. Piscataway: IEEE; 2009:124-26.
    20. Ouyang Y, Yoon Y, Guo J: Scaling behaviors of graphene nanoribbon FETs: a three-dimensional quantum simulation study. / IEEE Trans Electron Devices 2007, 54:2223-231. CrossRef
    21. Yoon Y, Fiori G, Hong S, Lannaccone G, Guo J: Performance comparison of graphene nanoribbon FETs with Schottky contacts and doped reservoirs. / IEEE Trans Electron Devices 2008, 55:2314-323. CrossRef
    22. Zhang Q, Fang T, Xing H, Seabaugh A, Jena D: Graphene nanoribbon tunnel transistors. / IEEE Electron Device Lett 2008, 29:1344-346. CrossRef
    23. Naeemi A, Meindl JD: Conductance modeling for graphene nanoribbon (GNR) interconnects. / IEEE Electron Device Lett 2007, 28:428-31. CrossRef
    24. Liang Q, Dong J: Superconducting switch made of graphene–nanoribbon junctions. / Nanotechnology 2008, 19:355706. CrossRef
    25. Zhu J: A novel graphene channel field effect transistor with Schottky tunneling source and drain. In / Proceedings of the ESSDERC 2007: 37th European Solid State Device Research Conference, 2007: September 11-3 2007; Munich. Piscataway: IEEE; 2007:243-46.
    26. Guettinger J, Stampfer C, Molitor F, Graf D, Ihn T, Ensslin K: Coulomb oscillations in three-layer graphene nanostructures. / New J Phys 2008, 10:125029. CrossRef
    27. Rahmani M, Ahmadi MT, Ismail R, Ghadiry MH: Performance of bilayer graphene nanoribbon Schottky diode in comparison with conventional diodes. / J Comput Theor Nanosci 2013, 10:1-. CrossRef
    28. Neamen DA: / Semiconductor Physics and Devices. 3rd edition. New York: McGraw-Hill; 2003.
    29. Kargar A, Lee C: Graphene nanoribbon schottky diodes using asymmetric contacts. In / Proceedings of the IEEE-NANO2009: 9th Conference on Nanotechnology, 2009: July 26-0 2009; Genoa. Piscataway: IEEE; 2009:243-45.
    30. Jimenez D: A current–voltage model for Schottky-barrier graphene based transistors. / Nanotechnology 2008, 19:345204. CrossRef
    31. Ahmadi MT, Rahmani M, Ghadiry MH, Ismail R: Monolayer graphene nanoribbon homojunction characteristics. / Sci Adv Mater 2012, 4:753-56. CrossRef
    32. Sadeghi H, Ahmadi MT, Mousavi M, Ismail R: Channel conductance of ABA stacking trilayer graphene field effect transistor. / Mod Phys Lett B 2012, 26:1250047. CrossRef
    33. Avetisyan AA, Partoens B, Peeters FM: Electric-field control of the band gap and Fermi energy in graphene multilayers by top and back gates. / Phys Rev B 2009, 80:195401. CrossRef
    34. McCann E, Koshino M: Spin-orbit coupling and broken spin degeneracy in multilayer graphene. / Phys Rev B 2010, 81:241409. CrossRef
    35. Guinea F, Castro Neto AH, Peres NMR: Electronic states and Landau levels in graphene stacks. / Phys Rev B 2006, 73:245426. CrossRef
    36. Latil S, Meunier V, Henrard L: Massless fermions in multilayer graphitic systems with misoriented layers: ab initio calculations and experimental fingerprints. / Phys Rev B 2007, 76:201402. CrossRef
    37. Castro EV, Novoselov KS, Morozov SV, Peres NMR, Santos JMB L, Nilsson J, Guinea F, Geim AK, Castro AH: Electronic properties of a biased graphene bilayer. / J Phys Condens Matter 2010, 22:175503. CrossRef
    38. Kato T: / Perturbation Theory for Linear Operators. Berlin: Springer; 1995:132.
    39. Rahmani M, Ahamdi MT, Ghadiry MH, Anwar S, Ismail R: The effect of applied voltage on the carrier effective mass in ABA trilayer graphene nanoribbon. / Comput Theor Nanosci 2012, 9:1-. CrossRef
    40. Guinea F, Castro Neto AH, Peres NMR: Interaction effects in single layer and multi-layer graphene. / Eur Phys J Spec Top 2007, 148:117-25. CrossRef
    41. Krompiewski S: Ab initio studies of Ni-Cu-Ni trilayers: layer-projected densities of states and spin-resolved photoemission spectra. / J Phys Condens Matter 1998, 10:9663. CrossRef
    42. Arora VK: Failure of Ohm's law: its implications on the design of nanoelectronic devices and circuits. In / Proceedings of the 2006 25th IEEE International Conference on Microelectronics: May 14-7 2006; Belgrade. Piscataway: IEEE; 2006:15-2.
    43. Rahmani M, Ahmadi MT, Ismail R, Ghadiry MH: Quantum confinement effect on trilayer graphene nanoribbon carrier concentration. / J Exp Nanosci in press
    44. Kumar SB, Guoa J: Chiral tunneling in trilayer graphene. / Appl Phys Lett 2012, 100:163102. CrossRef
    45. Datta S: / Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge University Press; 2012.
    46. Polyanin AD: / Cubic equation. [http://eqworld.ipmnet.ru/en/solutions/ae/ae0103.pdf]
    47. Choi B: Improvement of drain leakage current characteristics in metal-oxide-semiconductor-field-effect-transistor by asymmetric source-drain structure. In / Proceedings of the 2012 IEEE International Meeting for Future of Electron Devices Kansai (IMFEDK): May 9-2 2012; Osaka. Piscataway: IEEE; 2012:1-. CrossRef
    48. Alam K: Transport and performance of a zero-Schottky barrier and doped contacts graphene nanoribbon transistors. / Semicond Sci Technol 2009, 24:015007. CrossRef
    49. Ouyang Y, Dai H, Guo J: Multilayer graphene nanoribbon for 3D stacking of the transistor channel. In / Proceedings of the IEDM 2009: IEEE International Electron Devices Meeting: December 7- 2009; Baltimore. Piscataway: IEEE; 2009:1-.
    50. Fiori G, Yoon Y, Hong S, Jannacconet G, Guo J: Performance comparison of graphene nanoribbon Schottky barrier and MOS FETs. In / Proceedings of the IEDM 2007: IEEE International Electron Devices Meeting: December 10-2 2007; Washington, D.C. Piscataway: IEEE; 2007:757-60.
    51. Datta S: / Quantum Transport: Atom to Transistor. New York: Cambridge University Press; 2005:113-14. CrossRef
    52. Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Blake P, Novoselov KS, Watanabe K, Taniguchi T, Geim AK: Micrometer-scale ballistic transport in encapsulated graphene at room temperature. / Nano Lett 2011, 11:2396-399. CrossRef
    53. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, De Heer WA: Electronic confinement and coherence in patterned epitaxial graphene. / Science 2006, 312:1191-196. CrossRef
    54. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA: Electric field effect in atomically thin carbon films. / Science 2004, 306:666-69. CrossRef
    55. Gunlycke D, Lawler HM, White CT: Room temperature ballistic transport in narrow graphene strips. / Phys Rev B 2008, 75:085418. CrossRef
    56. Jiménez D: A current–voltage model for Schottky-barrier graphene-based transistors. / Nanotechnology 2008, 19:345204-45208. CrossRef
    57. Liao L, Bai J, Cheng R, Lin Y, Jiang S, Qu Y, Huang Y, Duan X: Sub-100 nm channel length graphene transistors. / Nano Letters 2010, 10:3952-956. CrossRef
    58. Thompson S, Packan P, Bohr M: MOS scaling: transistor challenges for the 21st century. / Intel Technol J 1999, 2:1-9.
    59. Saurabh S, Kumar MJ: Impact of strain on drain current and threshold voltage of nanoscale double gate tunnel field effect transistor: theoretical investigation and analysis. / Jpn J Appl Phys 2009, 48:064503-64510. CrossRef
    60. Jin L, Hong-Xia L, Bin L, Lei C, Bo Y: Study on two-dimensional analytical models for symmetrical gate stack dual gate strained silicon MOSFETs. / Chin Phys B 2010, 19:107302. CrossRef
    61. Ray B, Mahapatra S: Modeling of channel potential and subthreshold slope of symmetric double-gate transistor. / IEEE Trans Electron Devices 2009, 56:260-66. CrossRef
    62. Rechem D, Latreche S, Gontrand C: Channel length scaling and the impact of metal gate work function on the performance of double gate-metal oxide semiconductor field-effect transistors. / J Phys 2009, 72:587-99.
    63. Majumdar K, Murali Kota VRM, Bhat N, Lin Y-M: Intrinsic limits of subthreshold slop in biased bilayer graphene transistor. / Appl Phys Lett 2010, 96:123504. CrossRef
    64. Svili?i? B, Jovanovi? V, Suligoj T: Vertical silicon-on-nothing FET: subthreshold slope calculation using compact capacitance model. / Inform MIDEM J Microelectron Electron Components Mater 2008, 38:1-.
  • 作者单位:Meisam Rahmani (1)
    Mohammad Taghi Ahmadi (1) (2)
    Hediyeh Karimi Feiz Abadi (3) (4)
    Mehdi Saeidmanesh (1)
    Elnaz Akbari (4)
    Razali Ismail (1)

    1. Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Johor, 81310, Malaysia
    2. Electrical Engineering Department, Urmia University, Urmia, 57135, Iran
    3. Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Semarak, Kuala Lumpur, 54100, Malaysia
    4. Centre for Artificial Intelligence and Robotics (CAIRO), Universiti Teknologi Malaysia, Jalan Semarak, Kuala Lumpur, 54100, Malaysia
  • ISSN:1556-276X
文摘
Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current–voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current–voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700