Evaluation of Status of Cadmium, Lead, and Nickel Levels in Biological Samples of Normal and Night Blindness Children of Age Groups 3- and 8-2?Years
详细信息    查看全文
  • 作者:Hassan Imran Afridi (1) (2)
    Tasneem Gul Kazi (1)
    Naveed Kazi (3)
    Sirajuddin (1)
    Ghulam Abbas Kandhro (1)
    Jameel Ahmed Baig (1)
    Abdul Qadir Shah (1)
    Sham Kumar Wadhwa (1)
    Sumaira Khan (1)
    Nida Fatima Kolachi (1)
    Faheem Shah (1)
    Mohammad Khan Jamali (1)
    Mohammad Balal Arain (1)
  • 关键词:Night blindness ; Cadmium ; Lead ; Nickel ; Biological samples ; Wet acid digestion methods ; Children ; Age groups (3-2) ; Atomic absorption spectrophotometer
  • 刊名:Biological Trace Element Research
  • 出版年:2011
  • 出版时间:September 2011
  • 年:2011
  • 卷:142
  • 期:3
  • 页码:350-361
  • 全文大小:169KB
  • 参考文献:1. Christian P, West KP, Khatry SK (2001) Maternal night blindness increases risk of mortality in the first 6?months of life among infants in Nepal. J Nutr 131:1510-512
    2. Brody T (1999) Nutritional Biochemistry, 2nd edn. Academic, San Diego
    3. Fox DA, Campbell ML, Blocker YS (1997) Functional alterations and apoptotic cell death in the retina following developmen-tal or adult lead exposure. Neurotoxicology 18:645-64
    4. Bressler J, Kim KA, Chakraborti C, Goldstein G (1999) Mechanism of lead neurotoxicity. Neurochem Res 24:595-00 CrossRef
    5. Humphreys DJ (1991) Effects of exposure to excessive quantities of lead on animals. Br Vet J 147:18-0
    6. Khalil-Manesh F, Gonik HC, Weiler EJ et al (1993) Lead-induced hypertension: possible role of endothelial factors. Am J Hypertens 6:723-29
    7. Eichenbaum JW, Zheng W (2000) Distribution of lead and transthyretin in human eyes. Clin Toxicol 38:377-81 CrossRef
    8. Hu H, Rabinowitz M, Smith D (1998) Bone lead as a biological marker in epidmiologic studies of chronic toxicity: conceptual paradigms. Env Health Persp 105:1- CrossRef
    9. Cavallaro T, Martone RL, Dwork AJ et al (1990) The retinal pigment epithelium is the unique site of transthyretin synthesis in the rat eye. Invest Ophthal Vis Sci 31:497-01
    10. Zheng W, Shen H, Blaner WS et al (1996) Chronic lead exposure alters transthyretin concentration in rat cerebrospinal fluid: the role of the choroid plexus. Toxicol Appl Pharmacol 139:445-50 CrossRef
    11. Satarug S, Baker JR, Urbenjapol S et al (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65-3 CrossRef
    12. Zheng W, Blaner WS, Zhao Q (1999) Inhibition by Pb of production and secretion of transthyretin in the choroid plexus: its relationship to thyroxine transport at the blood-CSF barrier. Toxicol Appl Pharmacol 155:24-1 CrossRef
    13. Stillman MJ, Presta A (2000) Characterizing metal ion interactions with biological molecules—the spectroscopy of metallothionein. In: Zalups RZ, Koropatnick J (eds) Molecular biology and toxicology of metals. Taylor & Francis, New York, pp 276-99
    14. Ulshafer RJ, Allen CB, Rubin ML (1990) Distributions of elements in the human retinal pigment epithelium. Arch Ophthalmol 108:113-17
    15. Afridi HI, Kazi TG, Kazi GH et al (2006) Essential trace and toxic element distribution in the scalp hair of Pakistani myocardial infarction patients and controls. Biol Trace Elem Res 113:19-4 CrossRef
    16. Polkowska Z, Kozlowska K, Namiesnik J, Przyjazny A (2004) Biological fluids as a source of information on the exposure of man to environmental chemical agents. Crit Rev Anal Chem 34(2):105-19 CrossRef
    17. Rodushkin I, Odman OF, Olofsson R, Axelsson MD (2000) Determination of 60 elements in whole blood by sector field inductively coupled plasma mass spectrometry. J Anal At Spectrom 15(8):937-44 CrossRef
    18. De Castro Maciel CJ, Miranda GM, De Oliveira DP et al (2003) Determination of cadmium in human urine by electrothermal atomic absorption spectrometry. Anal Chim Acta 491(2):231-37 CrossRef
    19. Khalique A, Ahmad S, Anjum T et al (2005) A comparative study based on gender and age dependence of selected metals in scalp hair. Environ Monit Assess 104(1-):45-7 CrossRef
    20. Senofonte O, Violante N, Caroli S (2000) Assessment of reference values for elements in human hair of urban schoolboys. J TEs Med Biology 14(1):6-3
    21. Kazi TG, Arain MB, Baig JA et al (2009) The correlation of arsenic levels in drinking water with the biological samples of skin disorders. Sci Total Environ 407:1019-026
    22. Kazi TG, Jalbani N, Kazi N et al (2009) Estimation of toxic metals in scalp hair samples of chronic kidney patient. Biol Trace Elem Res 125(3):16-7 CrossRef
    23. Wright RO, Amarasiriwardena C, Woolf AD et al (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 27(2):210-16 CrossRef
    24. Kimble MS (1939) The photoelectric determination of vitamin A and carotene in human plasma. J Lab Clin Med 24:1055
    25. Afridi HI, Kazi TG, Kazi GH (2006) Analysis of heavy metals in scalp hair samples of hypertensive patients by conventional and microwave digestion methods. Spectrosc Lett 39:203-14 CrossRef
    26. Kazi TG, Afridi HI, Kazi GH, Jamali MK, Arain MB, Jalbani N (2006) Evaluation of essential and toxic metals by ultrasound-assisted acid leaching from scalp hair samples of children with macular degeneration patients. Clin Chim Acta 369(1):52-0 CrossRef
    27. VandenLangenberg GM (1998) Associations between antioxidant and zinc intake and the 5-year incidence of early age-related maculopathy in the Beaver Dam eye study. Am J Epidemiol 148(2):204-14
    28. Yiin SJ, Chern CL, She JY et al (1999) Cadmium induced renal lipid peroxidation in rats and protection by selenium. J Toxicol Environ Health A 57:403-13 CrossRef
    29. Bhattacharyya MH, Wilson AK, Ragan SS, Jonch M (2000) Biochemical pathways in cadmium toxicity. In: Zalups RZ, Koropatnick J (eds) Molecular biology and toxicology of metals. Taylor & Francis, New York, pp 276-99
    30. Fox DA, Sillman AJ (1979) Heavy metals affect rods, but not cone photoreceptors. Science 206:78-0 CrossRef
    31. Bushnell PJ, Bowman RE (1977) Scotopic vision deficits in young monkeys exposed to lead. Science 196:333-35 CrossRef
    32. Brown DVL (1974) Reactions of the rabbit retinal pigment epithelium to systemic lead poisoning. Trans Am Ophthamol Soc 72:404-47
    33. Hughes WF, Coogan P (1974) Pathology of the retinal pigment epithelium and retina in rabbits poisoned with lead. Am J Pathol 77:237-54
    34. Beatty S, Koh H, Phil M et al (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115-34 CrossRef
    35. Potts AM, Au PC (1976) The affinity of melanin for inorganic ions. Exp Eye Res 22:487-91 CrossRef
    36. Larrson BS (1993) Interaction between chemicals and melanin. Pigment Cell Res 6:127-33 CrossRef
    37. Panessa BJ, Zadunaisky JA (1981) Pigment granules: a calcium reservoir in the vertebrate eye. Exp Eye Res 32:593-04 CrossRef
    38. Samuelson DA, Smith P, Ulshafer FJ et al (1993) X-ray microanalysis of ocular melanin in pigs maintained in normal and low zinc diets. Exp Eye Res 56:63-0 CrossRef
    39. Drager UC, Balkema GW (1987) Does melanin do more than protect from light? Neurosci Res Suppl 6:575-86
    40. Sarna T, Hyde JS, Swartz HM (1976) Ion exchange in melanin, an electron spin resonance study with lanthanide probes. Science 192:1132-134 CrossRef
    41. Jamall IS, Roque H (1989-990) Cadmium-induced alterations of ocular trace elements. Influence of dietary selenium and copper. Biol Trace Elem Res 23:55-3 CrossRef
    42. Sarna T, Froncisz W, Hyde JC (1980) Cu2 probe of metal-ion binding sites in melanin using electron paramagnetic resonance spectroscopy. II. Natural melanin. Arch Biochem Biophys 202:304-13 CrossRef
  • 作者单位:Hassan Imran Afridi (1) (2)
    Tasneem Gul Kazi (1)
    Naveed Kazi (3)
    Sirajuddin (1)
    Ghulam Abbas Kandhro (1)
    Jameel Ahmed Baig (1)
    Abdul Qadir Shah (1)
    Sham Kumar Wadhwa (1)
    Sumaira Khan (1)
    Nida Fatima Kolachi (1)
    Faheem Shah (1)
    Mohammad Khan Jamali (1)
    Mohammad Balal Arain (1)

    1. National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
    2. Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
    3. Liaquat University of Medical and Health Sciences, Jamshoro, 76080, Pakistan
文摘
The causes of night blindness in children are multifactorial, and particular consideration has been given to childhood trace metals toxicity, which is the most common problem found in underdeveloped countries. This study was designed to compare the levels of cadmium (Cd), lead (Pb), and nickel (Ni) in scalp hair, blood, and urine of night blindness children age ranged 3- and 8-2?years of both genders, comparing them to sex- and age-matched controls. A microwave-assisted wet acid digestion procedure was developed as a sample pretreatment, for the determination of Cd, Pb, and Ni in biological samples of night blindness children. The proposed method was validated by using conventional wet digestion and certified reference samples of hair, blood, and urine. The digests of all biological samples were analyzed for Cd, Pb, and Ni by electrothermal atomic absorption spectrometry. The results indicated significantly higher levels of Cd, Pb, and Ni in the biological samples (blood, scalp hair, and urine) of male and female night blindness children, compared with control subjects of both genders. These data present guidance to clinicians and other professional investigating toxicity of trace metals in biological samples of night blindness children.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700