Genetic diversity and population structure of Ascochyta rabiei from the western Iranian Ilam and Kermanshah provinces using MAT and SSR markers
详细信息    查看全文
  • 作者:Khoshnood Nourollahi (1)
    Mohammad Javannikkhah (1)
    Mohammad Reza Naghavi (2)
    Judith Lichtenzveig (3)
    Sayed Mahmmod Okhovat (1)
    Richard P. Oliver (3)
    Simon R. Ellwood (3)
  • 关键词:Ascochyta blight ; Ascochyta rabiei ; Genetic diversity ; Gene flow
  • 刊名:Mycological Progress
  • 出版年:2011
  • 出版时间:March 2011
  • 年:2011
  • 卷:10
  • 期:1
  • 页码:1-7
  • 全文大小:184KB
  • 参考文献:1. Barve MP, Arie T, Salimath SS, Muehlbauer FJ, Peever TL (2003) Cloning and characterization of the mating type (MAT) locus from / Ascochyta rabiei (teleomorph: / Didymella rabiei) and a MAT phylogeny of legume-associated / Ascochyta spp. Fungal Genet Biol 39:151-67 CrossRef
    2. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11-5
    3. Fischer C, Porta-Puglia A, Barz W (1995) RAPD Analysis of Pathogenic Variability in / Ascochyta rabiei. J Phytopathol 143:601-07 CrossRef
    4. Geistlinger J, Weising K, Winter P, Kahl G (2000) Locus-specific microsatellite markers for the fungal chickpea pathogen / Didymella rabiei (anamorph) / Ascochyta rabiei. Mol Ecol 9:1939-941 CrossRef
    5. Grewal JS (1984) Evidence of physiological races in / Ascochyta rabiei of chickpea. In: Saxena MC, Singh KB (eds) Ascochyta blight and winter sowing of chickpea. Nijhoff/Junk, The Hague, pp 55-5
    6. Hayden M, Nguyen T, Waterman A, Chalmers K (2008) Multiplex-Ready PCR: A new method for multiplexed SSR and SNP genotyping. BMC Genomics 9:80 CrossRef
    7. Jamil FF, Sarwar N, Sarwar M, Khan JA, Geistlinger J, Kahl G (2000) Genetic and pathogenic diversity within / Ascochyta rabiei (Pass.) Lab. populations in Pakistan causing blight of chickpea ( / Cicer arietinum L.). Physiol Mol Plant Pathol 57:243-54 CrossRef
    8. Kaiser WJ (1997) Inter—and intranational spread of ascochyta pathogens of chickpea, faba bean, and lentil. Can J Plant Path 19:215-44 CrossRef
    9. Kaiser WJ, Hannan RM (1987) First report of / Mycosphaerella rabiei on chickpeas in the Western Hemisphere. Plant Dis 71:192 CrossRef
    10. Keller SM, McDermott JM, Pettway RE, Wolfe MS, McDonald BA (1997) Gene flow and sexual reproduction in the wheat glume blotch pathogen / Phaeosphaeria nodorum (anamorph / Stagonospora nodorum). Phytopathology 87:353-58 CrossRef
    11. McDermott JM, McDonald BA (1993) Gene flow in plant pathosystems. Annu Rev Phytopathol 31:353-73 CrossRef
    12. McDonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163-80 CrossRef
    13. Morjane H, Geistlinger J, Harrabi M, Weising K, Kahl G (1994) Oligonucleotide fingerprinting detects genetic diversity among / Ascochyta rabiei isolates from a single chickpea field in Tunisia. Curr Genet 26:191-97 CrossRef
    14. Navas-Cortés J, Pérez-Artés E, Jiménez-Diaz R, Llobell A, Bainbridge B, Heale J (1998) Mating type, pathotype and RAPDs analysis in / Didymella rabiei, the agent of ascochyta blight of chickpea. Phytoparasitica 26:199-12 CrossRef
    15. Navas-Cortes JA, Trapero-Casas A, Jimenez-Diaz RM (1998) Phenology of / Didymella rabiei development on chickpea debris under field conditions in Spain. Phytopathology 88:983-91 CrossRef
    16. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321-323 CrossRef
    17. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583-90
    18. Nene YL, Reddy MV (1987) Chickpea diseases and their control. In: Sexena MK, Singh KB, Johansen C (eds) The chickpea. CABI International, Wallingford, pp 233-70
    19. Peever TL, Salimath SS, Su G, Kaiser WJ, Muehlbauer FJ (2004) Historical and contemporary multilocus population structure of / Ascochyta rabiei (teleomorph: / Didymella rabiei) in the Pacific Northwest of the United States. Mol Ecol 13:291-09 CrossRef
    20. Phan HTT, Ford R, Taylor PWJ (2003) Population structure of / Ascochyta rabiei in Australia based on STMS fingerprints. Fungal Divers 13:111-29
    21. Rhaiem A, Cherif M, Dyer PS, Peever TL (2007) Distribution of mating types and genetic diversity of / Ascochyta rabiei populations in Tunisia revealed by mating-type-specific PCR and random amplified polymorphic DNA markers. J Phytopathol 155:596-05 CrossRef
    22. Rhaiem A, Chérif M, Peever TL, Dyer PS (2008) Population structure and mating system of / Ascochyta rabiei in Tunisia: evidence for the recent introduction of mating type 2. Plant Pathol 57:540-51 CrossRef
    23. Santra DK, Singh G, Kaiser WJ, Gupta VS, Ranjekar PK, Muehlbauer FJ (2001) Molecular analysis of / Ascochyta rabiei (Pass.) Labr., the pathogen of ascochyta blight in chickpea. Theor Appl Genet 102:676-82 CrossRef
    24. Schl?tterer C, Ellegren H (1998) Genome evolution: Are microsatellites really simple sequences? Curr Biol 8:132-34 CrossRef
    25. Shah D, Bergstrom GC, Ueng PP (1995) Initiation of septoria nodorum blotch epidemics in winter wheat by seedborne / Stagonospora nodorum. Phytopathology 85:452-57 CrossRef
    26. Singh KB, Hawtin GC, Nene YL, Reddy MV (1981) Resistance in chickpeas to / Ascochyta rabiei. Plant Dis 65:586-87 CrossRef
    27. Trapero-Casas A, Kaiser WJ (1992) Development of / Didymella rabiei, the teleomorph of / Ascochyta rabiei, on chickpea straw. Phytopathology 82:1261-266 CrossRef
    28. Trapero-Casas A, Navas-Cortés JA, Jiménez-Díaz RM (1996) Airborne ascospores of / Didymella rabiei as a major primary inoculum for Ascochyta blight epidemics in chickpea crops in southern Spain. Eur J Plant Pathol 102:237-45 CrossRef
    29. Udupa SM, Weigand F, Saxena MC, Kahl G (1998) Genotyping with RAPD and microsatellite markers resolves pathotype diversity in the ascochyta blight pathogen of chickpea. Theor Appl Genet 97:299-07 CrossRef
    30. van der Maesen LJG (1987) Origin, history and taxonomy of chickpea. In: Saxena MC, Singh KB (eds) The chickpea. CABI, Wallingford, pp 11-4
    31. Varshney R, Pande S, Kannan S, Mahendar T, Sharma M, Gaur P, Hoisington D (2009) Assessment and comparison of AFLP and SSR based molecular genetic diversity in Indian isolates of / Ascochyta rabiei, a causal agent of Ascochyta blight in chickpea ( / Cicer arietinum L.). Mycol Prog 8:87-7 CrossRef
    32. Wilson AD, Kaiser WJ (1995) Cytology and genetics of sexual compatibility in / Didymella rabiei. Mycologia 87:795-04 CrossRef
    33. Yeh F, Yang R, Boyle T (1999) POPGENE version 1.31. Microsoft Windows-based software for population genetics analysis. University of Alberta and Centre for International Forestry Research, Alberta
    34. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1-6 CrossRef
  • 作者单位:Khoshnood Nourollahi (1)
    Mohammad Javannikkhah (1)
    Mohammad Reza Naghavi (2)
    Judith Lichtenzveig (3)
    Sayed Mahmmod Okhovat (1)
    Richard P. Oliver (3)
    Simon R. Ellwood (3)

    1. Agricultural College, University of Ilam, Ilam, Iran
    2. Agronomy and Plant Breeding Department, Agricultural College, University of Tehran, Karaj, Iran
    3. Australian Centre for Necrotrophic Fungal Pathogens, Health Sciences, Murdoch University, Perth, WA, 6150, Australia
文摘
Knowledge of genetic diversity in A. rabiei provides different levels of information that are important in the management of crop germplasm resources. Gene flow on a regional level indicates a significant potential risk for the regional spread of novel alleles that might contribute to fungicide resistance or the breakdown of resistance genes. Simple sequence repeat (SSR) and mating type (MAT) markers were used to determine the genetic structure, and estimate genetic diversity and the prevalence of mating types in 103 Ascochyta rabiei isolates from seven counties in the Ilam and Kermanshah provinces of western Iran (Ilam, Aseman abad, Holaylan, Chardavol, Dareh shahr, Gilangharb, and Sarpul). A set of 3 microsatellite primer pairs revealed a total of 75 alleles; the number of alleles varied from 15 to 34 for each marker. A high level of genetic variability was observed among A. rabiei isolates in the region. Genetic diversity was high (He--.788) within populations with corresponding high average gene flow and low genetic distances between populations. The smallest genetic distance was observed between isolates from Ilam and Chardavol. Both mating types were present in all populations, with the majority of the isolates belonging to Mat1-1 (64%), but within populations the proportions of each mating type were not significantly different from 50%. Results from this study will be useful in breeding for Ascochyta blight-resistant cultivars and developing necessary control measures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700