Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency
详细信息    查看全文
  • 作者:Mohammad Sajad Sorayani Bafqi ; Roohollah Bagherzadeh…
  • 刊名:Journal of Polymer Research
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:22
  • 期:7
  • 全文大小:1,280 KB
  • 参考文献:1.Fang J et al (2013) Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ Sci 6(7):2196–2202CrossRef
    2.Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 4(1):18–27CrossRef
    3.Tian B et al (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889CrossRef
    4.Li Y et al (2006) Nanowire electronic and optoelectronic devices. Mater Today 9(10):18–27CrossRef
    5.Chen J et al (2005) Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310(5751):1171–1174CrossRef
    6.Javey A et al (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949):654–657CrossRef
    7.Qin Y, Wang X, Wang ZL (2008) Microfibre–nanowire hybrid structure for energy scavenging. Nature 451(7180):809–813CrossRef
    8.Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18(2):025009CrossRef
    9.DuToit NE, Wardle BL (2007) Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J 45(5):1126–1137CrossRef
    10.Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1CrossRef
    11.Shu Y, Lien I (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15(6):1499CrossRef
    12.Beeby SP, Tudor MJ, White N (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef
    13.Guyomar D et al (2005) Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans Ultrason Ferroelectr Freq Control 52(4):584–595CrossRef
    14.Sodano HA, Park G, Inman D (2004) Estimation of electric charge output for piezoelectric energy harvesting. Strain 40(2):49–58CrossRef
    15.Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26(11):1131–1144CrossRef
    16.Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 36(3):197–206CrossRef
    17.Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246CrossRef
    18.Huang CT et al (2010) Single‐InN‐nanowire nanogenerator with up to 1 V Output Voltage. Adv Mater 22(36):4008–4013CrossRef
    19.Huang C-T et al (2010) GaN nanowire arrays for high-output nanogenerators. J Am Chem Soc 132(13):4766–4771CrossRef
    20.Lin YF et al (2008) Alternating the output of a CdS nanowire nanogenerator by a white‐light‐stimulated optoelectronic effect. Adv Mater 20(16):3127–3130CrossRef
    21.Lu M-Y et al (2009) ZnO− ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano 3(2):357–362CrossRef
    22.Li Z et al (2010) Muscle‐driven in vivo nanogenerator. Adv Mater 22(23):2534–2537CrossRef
    23.Yang R et al (2009) Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett 9(3):1201–1205CrossRef
    24.Wang X et al (2009) Output of an ultrasonic wave-driven nanogenerator in a confined tube. Nano Res 2(3):177–182CrossRef
    25.Wang X et al (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821):102–105CrossRef
    26.Wang X et al (2007) Integrated nanogenerators in biofluid. Nano Lett 7(8):2475–2479CrossRef
    27.Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J Mater Chem 21(30):11088–11091CrossRef
    28.Liu Z et al (2013) Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sensors Actuators A Phys 193:13–24CrossRef
    29.Chen X et al (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10(6):2133–2137CrossRef
    30.Hansen BJ et al (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7):3647–3652CrossRef
    31.Chang J et al (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1(3):356–371CrossRef
    32.Lovinger AJ (1983) Ferroelectric polymers. Science 220(4602):1115–1121CrossRef
    33.Chang C et al (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10(2):726–731CrossRef
    34.Meyers FN et al (2013) Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites. Nanotechnology 24(18):185501CrossRef
    35.Bae S-H et al (2013) Graphene-P (VDF-TrFE) multilayer film for flexible applications. ACS Nano 7(4):3130–3138CrossRef
    36.Xi Y et al (2009) Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J Mater Chem 19(48):9260–9264CrossRef
    37.Loh K, Kim J, Lynch J (2008) Self-sensing and power harvesting carbon nanotube-composites based on piezoelectric polymers. Bridge maintenance, safety, management, health monitoring and informatics, IABMAS, 8
    38.Dagdeviren C, Papila M (2010) Dielectric behavior characterization of a fibrous‐ZnO/PVDF nanocomposite. Polym Compos 31(6):1003–1010CrossRef
    39.Jia N et al (2015) Enhanced β-crystalline phase in poly (vinylidene fluoride) films by polydopamine-coated BaTiO 3 nanoparticles. Mater Lett 139:212–215CrossRef
    40.Niu Y et al (2015) Enhanced dielectric performance of BaTiO 3/PVDF composites prepared by modified process for energy storage applications. IEEE Trans Ultrason Ferroelectr Freq Control 62(1):108–115CrossRef
    41.Montazer M, Maali Amiri M (2014) ZnO nano reactor on textiles and polymers: ex situ and in situ synthesis, application, and characterization. J Phys Chem B 118(6):1453–1470CrossRef
    42.Trolier-McKinstry S, Muralt P (2004) Thin film piezoelectrics for MEMS. J Electroceram 12(1–2):7–17CrossRef
    43.Gheibi A et al (2014) Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications. J Polym Res 21(7):1–7CrossRef
    44.Gheibi A et al (2014) Electrical power generation from piezoelectric electrospun nanofibers membranes: electrospinning parameters optimization and effect of membranes thickness on output electrical voltage. J Polym Res 21(11):1–14CrossRef
    45.Persano L et al (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nat Commun 4:1633CrossRef
    46.Satapathy S et al (2011) Effect of annealing on the phase transition in poly (vinylidene fluoride) films prepared using polar solvent. Bull Mater Sci 34(4):727–733CrossRef
    47.Choi S-S et al (2004) Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim Acta 50(2):339–343CrossRef
  • 作者单位:Mohammad Sajad Sorayani Bafqi (1)
    Roohollah Bagherzadeh (2)
    Masoud Latifi (1)

    1. Textile Engineering Department, Textile Research and Excellence Centers, Amirkabir University of Technology, Tehran, Iran
    2. Advanced Textile Materials and Technology (ATMT) Research Institute, Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1572-8935
文摘
Composite electrospun nanofibers mats, as a nano-generator, were fabricated through one-step electrospinning method. The structure of fibers is composed of Poly(vinylidene fluoride), PVDF, as the matrix, and Zinc oxide (ZnO) nanoparticles; the nanocomposite were produced using electrospinning technique in order to have the benefit of piezoelectric properties and non-brittle behavior of ZnO and PVDF for the application in wearable electronic devices. Characteristics of these structures were evaluated by using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM). Impedance and the electrical conductivity of the fabricated composites were also evaluated by Keithley instruments. Electrical response of samples was measured using an impedance analyzer made in Aims Lab (http://​aims.​aut.​ac.​ir) at room temperature. Results showed that incorporating the ZnO nanoparticles into the PVDF nanofibers improved the piezoelectric properties of samples compared to PVDF samples. The electrical output of composite samples was improved as high as 1.1 V compared with 0.351 V for the pure PVDF samples. These results imply promising applications, as an enhanced-efficiency energy-scavenging interface, for various wearable self-powered electrical devices and systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700