Regulation of Endoribonuclease Activity of Alpha-Type Proteasome Subunits in Proerythroleukemia K562 Upon Hemin-Induced Differentiation
详细信息    查看全文
  • 作者:Alexey G. Mittenberg ; Tatyana N. Moiseeva ; Valeria O. Kuzyk…
  • 关键词:Proteasome ; Endoribonuclease activity ; Posttranslational modifications ; Phosphorylation ; Ubiquitylation ; Differentiation
  • 刊名:The Protein Journal
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:35
  • 期:1
  • 页码:17-23
  • 全文大小:2,439 KB
  • 参考文献:1.Grigoreva TA, Tribulovich VG, Garabadzhiu AV, Melino G, Barlev NA (2015) The 26S proteasome is a multifaceted target for anti-cancer therapies. Oncotarget. doi:10.​18632/​oncotarget.​4619
    2.Konstantinova IM, Tsimokha AS, Mittenberg AG (2008) Role of proteasomes in cellular regulation. Int Rev Cell Mol Biol 267:59–124CrossRef
    3.Mittenberg AG, Moiseeva TN, Barlev NA (2008) The role of proteasomes in transcription and their regulation by post-translational modifications. Front Biosci 13:7184–7192CrossRef
    4.Moiseeva TN, Bottrill A, Melino G, Barlev NA (2013) DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity. Oncotarget 4:1338–1348CrossRef
    5.Petit F, Jarrousse AS, Boissonnet G, Dadet MH, Buri J, Briand Y, Schmid HP (1997) Proteasome (prosome) associated endonuclease activity. Mol Biol Rep 24:113–117CrossRef
    6.Kulichkova VA, Fedorova OA, Tsimokha AS, Moiseeva TN, Bottrill A, Lezina L, Gauze LN, Konstantinova IM, Mittenberg AG, Barlev NA (2010) 26S proteasome exhibits endoribonuclease activity controlled by extra-cellular stimuli. Cell Cycle 9:840–849CrossRef
    7.Mittenberg AG, Kulichkova VA, Medvedeva ND, Penniiainen VA, Gauze LN, Konstantinova IM (2002) Characteristics of endoribonuclease activity of proteasomes from K562 cells. I. Dependence of RNAse activity of proteasome and alpha-RNP on conditions of endonucleolysis reaction. Tsitologiia 44:181–187 (in Russian)
    8.Mittenberg AG, Kulichkova VA, Medvedeva ND, Volkova IV, Ermolaeva IuB, Konstantinova IM (2002) Properties of endoribonuclease activity of proteasomes from K562 cells. II. Analysis of specific mRNA nucleolysis by proteasomes. Tsitologiia 44:357–363 (in Russian)
    9.Mittenberg AG, Moiseeva TN, Podolskaya EP, Kuzyk VO, Evteeva IN, Barlev NA (2014) Mass-spectrometric analysis of proteasomal subunits possessing endoribonuclease activity. Tsitologiia 56:300–315 (in Russian)
    10.Mittenberg AG (2014) Non-canonical activities of proteasomes. Tsitologiia 56:331–339 (in Russian)
    11.Fedorova OA, Moiseeva TN, Nikiforov AA, Tsimokha AS, Livinskaya VA, Hodson M, Bottrill A, Evteeva IN, Ermolayeva JB, Kuznetzova IM, Turoverov KK, Eperon I, Barlev NA (2011) Proteomic analysis of the 20S proteasome (PSMA3)-interacting proteins reveals a functional link between the proteasome and mRNA metabolism. Biochem Biophys Res Commun 416:258–265CrossRef
    12.Tsimokha AS, Kulichkova VA, Karpova EV, Zaykova JJ, Aksenov ND, Vasilishina AA, Kropotov AV, Antonov A, Barlev NA (2014) DNA damage modulates interactions between microRNAs and the 26S proteasome. Oncotarget 5:3555–3567CrossRef
    13.Schröter F, Adjaye J (2014) The proteasome complex and the maintenance of pluripotency: Sustain the fate by mopping up? Stem Cell Res Ther 5:24CrossRef
    14.Morgunkova A, Barlev NA (2006) Lysine methylation goes global. Cell Cycle 5:1308–1312CrossRef
    15.Marouco D, Garabadgiu AV, Melino G, Barlev NA (2013) Lysine-specific modifications of p53: A matter of life and death? Oncotarget 4:1556–1571CrossRef
    16.Barlev NA, Sayan BS, Candi E, Okorokov AL (2010) The microRNA and p53 families join forces against cancer. Cell Death Differ 17:373–375CrossRef
    17.Lezina L, Purmessur N, Antonov AV, Ivanova T, Karpova E, Krishan K, Ivan M, Aksenova V, Tentler D, Garabadgiu AV, Melino G, Barlev NA (2013) miR-16 and miR-26a target checkpoint kinases Wee1 and Chk1 in response to p53 activation by genotoxic stress. Cell Death Dis 4:e953CrossRef
    18.Soussi T, Wiman KG (2015) TP53: an oncogene in disguise. Cell Death Differ. doi:10.​1038/​cdd.​2015.​53
    19.Ghosh M, Aguila HL, Michaud J, Ai Y, Wu MT, Hemmes A, Ristimaki A, Guo C, Furneaux H, Hla T (2009) Essential role of the RNA-binding protein HuR in progenitor cell survival in mice. J Clin Invest 119:3530–3543CrossRef
    20.Khan D, Katoch A, Das A, Sharathchandra A, Lal R, Roy P, Das S, Chattopadhyay S, Das S (2015) Reversible induction of translational isoforms of p53 in glucose deprivation. Cell Death Differ 22:1203–1218CrossRef
    21.Bianchi N, Ongaro F, Chiarabelli C, Gualandi L, Mischiati C, Bergamini P, Gambari R (2000) Induction of erythroid differentiation of human K562 cells by cisplatin analogs. Biochem Pharmacol 60:31–40CrossRef
    22.Durland-Busbice S, Reisman D (2002) Lack of p53 expression in human myeloid leukemias is not due to mutations in transcriptional regulatory regions of the gene. Leukemia 16:2165–2167CrossRef
    23.Di Bacco AM, Cotter TG (2002) p53 expression in K562 cells is associated with caspase-mediated cleavage of c-ABL and BCR-ABL protein kinases. Br J Haematol 117:588–597CrossRef
    24.De Thonel A, Vandekerckhove J, Lanneau D, Selvakumar S, Courtois G, Hazoume A, Brunet M, Maurel S, Hammann A, Ribeil JA, Zermati Y, Gabet AS, Boyes J, Solary E, Hermine O, Garrido C (2010) HSP27 controls GATA-1 protein level during erythroid cell differentiation. Blood 116:85–96CrossRef
    25.Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRef
    26.Silva-Pereira I, Bey F, Coux O, Scherrer K (1992) Two mRNAs exist for the Hs PROS-30 gene encoding a component of human prosomes. Gene 120:235–242CrossRef
    27.Limb JK, Yoon S, Lee KE, Kim BH, Lee S, Bae YS, Jhon GJ, Kim J (2009) Regulation of megakaryocytic differentiation of K562 cells by FosB, a member of the Fos family of AP-1 transcription factors. Cell Mol Life Sci 66:1962–1973CrossRef
    28.Tonini GP, Radzioch D, Gronberg A, Clayton M, Blasi E, Benetton G, Varesio L (1987) Erythroid differentiation and modulation of c-myc expression induced by antineoplastic drugs in the human leukemic cell line K562. Cancer Res 47:4544–4547
  • 作者单位:Alexey G. Mittenberg (1)
    Tatyana N. Moiseeva (1)
    Valeria O. Kuzyk (1)
    Nickolai A. Barlev (1)

    1. Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia, 194064
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Biochemistry
    Organic Chemistry
    Animal Anatomy, Morphology and Histology
  • 出版者:Springer Netherlands
  • ISSN:1573-4943
文摘
The proteasome is the main intracellular proteolytic machine involved in the regulation of numerous cellular processes, including gene expression. In addition to their proteolytic activity, proteasomes also exhibit ATPase/helicase (the 19S particle) and RNAse (the 20S particle) activities, which are regulated by post-translational modifications. In this report we uncovered that several 20S particle subunits: α1 (PSMA6), α2 (PSMA2), α4 (PSMA7), α5 (PSMA5), α6 (PSMA1) and α7 (PSMA3) possess RNAse activity against the p53 mRNA in vitro. Furthermore, we found that the RNAse activity of PSMA1 and PSMA3 was regulated upon hemin-induced differentiation of K562 proerythroleukemia cells. The decrease in RNAse activity of PSMA1 and PSMA3 was paralleled by changes in their status of phosphorylation and ubiquitylation. Collectively, our data support the notion that proteasomal RNAse activity may be functionally important and provide insights into the potential mechanism of p53 repression in erythroleukemia cells by RNAse activity of the 20S α-type subunits. Keywords Proteasome Endoribonuclease activity Posttranslational modifications Phosphorylation Ubiquitylation Differentiation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700