Effects of root water uptake formulation on simulated water and energy budgets at local and basin scales
详细信息    查看全文
  • 作者:Ian M. Ferguson ; Jennifer L. Jefferson ; Reed M. Maxwell…
  • 关键词:Integrated model ; Root uptake ; Vegetation water stress ; Wilting behavior ; Energy flux
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:75
  • 期:4
  • 全文大小:3,577 KB
  • 参考文献:Amenu GG, Kumar P (2008) A model for hydraulic redistribution incorporating coupled soil-root moisture transport. Hydrol Earth Syst Sci 12:55–74CrossRef
    Ashby SF, Falgout RD (1996) A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl Sci Eng 124:145–159
    Braud I, Varado N, Olioso A (2005) Comparison of root water uptake modules using either the surface energy balance or potential transpiration. J Hydrol 301:267–286. doi:10.​1016/​j.​jhydrol.​2004.​06.​033 CrossRef
    Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161CrossRef
    Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the penn state–NCAR MM5 modeling system. part i: model implementation and sensitivity. Mon Weather Rev 129:569–585. doi:10.​1175/​1520-0493(2001)129<0569:​CAALSH>2.​0.​CO;2 CrossRef
    Chen F, Mitchell K, Schaake J et al (1996) Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J Geophys Res 101:7251–7268CrossRef
    Christensen NS, Wood AW, Voisin N et al (2004) The effects of climate change on the hydrology and water resources of the Colorado River basin. Clim Chang 62:337–363CrossRef
    Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration : a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136CrossRef
    Dai Y, Zeng X, Dickinson RE (2001) Common land model (CLM) technical documentation and user’s guide
    Dai Y, Zeng X, Dickinson RE et al (2003) The common land model. Bull Am Meteorol Soc 84:1013–1023. doi:10.​1175/​BAMS-84-8-1013 CrossRef
    Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Oecologia 95:565–574CrossRef
    De Rosnay P, Polcher J (1998) Modelling root water uptake in a complex land surface scheme couple to a GCM. Hydrol Earth Syst Sci 2:239–255CrossRef
    El Maayar M, Price DT, Chen JM (2009) Simulating daily, monthly and annual water balances in a land surface model using alternative root water uptake schemes. Adv Water Resour 32:1444–1459. doi:10.​1016/​j.​advwatres.​2009.​07.​002 CrossRef
    Feddes RA, Hoff H, Bruen M et al (2001) Modeling root water uptake in hydrological and climate models. Bull Am Meteorol Soc 82:2797–2809. doi:10.​1175/​1520-0477(2001)082<2797:​MRWUIH>2.​3.​CO;2 CrossRef
    Ferguson IM, Maxwell RM (2010) Role of groundwater in watershed response and land surface feedbacks under climate change. Water Resour Res 46:15. doi:10.​1029/​2009WR008616 CrossRef
    Ferguson IM, Maxwell RM (2011) Hydrologic and land–energy feedbacks of agricultural water management practices. Environ Res Lett 6:7. doi:10.​1088/​1748-9326/​6/​1/​014006 CrossRef
    Ferretti DF, Pendall E, Morgan JA et al (2003) Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes: seasonal variations and ecosystem implications of elevated atmospheric CO2. Plant Soil 254:291–303CrossRef
    Guo Z, Dirmeyer PA (2006) Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 1. Intermodel comparison. J Geophys Res 111:14. doi:10.​1029/​2006JD007233
    Guswa AJ (2005) Soil-moisture limits on plant uptake: an upscaled relationship for water-limited ecosystems. Adv Water Resour 28:543–552. doi:10.​1016/​j.​advwatres.​2004.​08.​016 CrossRef
    Healy RW, Winter TC, LaBaugh JW, Franke OL (2007) Water budgets: foundations for effective water-resources and environmental management. US Geological Survey, Reston
    Herweijer C, Seager R, Cook ER, Emile-Geay J (2007) North American droughts of the last millennium from a gridded network of tree-ring data. J Clim 20:1353–1376. doi:10.​1175/​JCLI4042.​1 CrossRef
    Homaee M, Feddes RA, Dirksen C (2002) Simulation of root water uptake II. Non-uniform transient water stress using different reduction functions. Agric Water Manag 57:111–126CrossRef
    Jackson TJ, Le Vine DM, Hsu AY et al (1999) Soil moisture mapping at regional scales using microwave radiometry: the southern great plains hydrology experiment. IEEE Trans Geosci Remote Sens 37:2136–2151CrossRef
    Jarvis NJ (2011) Simple physics-based models of compensatory plant water uptake: concepts and eco-hydrological consequences. Hydrol Earth Syst Sci Discuss 8:6789–6831. doi:10.​5194/​hessd-8-6789-2011 CrossRef
    Javaux M, Schröder T, Vanderborght J, Vereecken H (2008) Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zo J 7:1079–1088. doi:10.​2136/​vzj2007.​0115 CrossRef
    Jones JE, Woodward CS (2001) Newton-Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems. Adv Water Resour 24:763–774CrossRef
    Katul G, Todd P, Pataki D et al (1997) Soil water depletion by oak trees and the influence of root water uptake on the moisture content spatial statistics. Water Resour Res 33:611–623CrossRef
    Kollet SJ, Maxwell RM (2006) Integrated surface–groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 29:945–958. doi:10.​1016/​j.​advwatres.​2005.​08.​006 CrossRef
    Kollet SJ, Maxwell RM (2008) Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour Res 44:18. doi:10.​1029/​2007WR006004 CrossRef
    Kollet SJ, Maxwell RM, Woodward CS et al (2010) Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources. Water Resour Res 46:7. doi:10.​1029/​2009WR008730 CrossRef
    Kucharik CJ, Foley JA, Delire C et al (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Glob Biogeochem Cycles 14:795–825CrossRef
    Lai C-T, Katul G (2000) The dynamic role of root-water uptake in coupling potential to actual transpiration. Adv Water Resour 23:427–439CrossRef
    Lawrence DM, Thornton PE, Oleson KW, Bonan GB (2007) The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land-atmosphere interaction. J Hydrometeorol 8:862–880. doi:10.​1175/​JHM596.​1 CrossRef
    Li KY, De Jong R, Coe MT, Ramankutty N (2006) Root-water-uptake based upon a new water stress reduction and an asymptotic root distribution function. Earth Interact 10:22. doi:10.​1175/​EI177.​1 CrossRef
    Li L, van der Tol C, Chen X et al (2013) Representing the root water uptake process in the common land model for better simulating the energy and water vapour fluxes in a Central Asian desert ecosystem. J Hydrol 502:145–155. doi:10.​1016/​j.​jhydrol.​2013.​08.​026 CrossRef
    Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res 99:14415–14428CrossRef
    Maxwell RM, Kollet SJ (2008a) Quantifying the effects of three-dimensional subsurface heterogeneity on Hortonian runoff processes using a coupled numerical, stochastic approach. Adv Water Resour 31:807–817. doi:10.​1016/​j.​advwatres.​2008.​01.​020 CrossRef
    Maxwell RM, Kollet SJ (2008b) Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat Geosci 1:665–669. doi:10.​1038/​ngeo315 CrossRef
    Mendel M, Hergarten S, Neugebauer HJ (2002) On a better understanding of hydraulic lift: a numerical study. Water Resour Res. doi:10.​1029/​2001WR000911
    Mesinger F, DiMego G, Kalnay E et al (2006) North American regional reanalysis. Bull Am Meteorol Soc 87:343–360. doi:10.​1175/​BAMS-87-3-343 CrossRef
    Miller GR, Chen X, Rubin Y et al (2010) Groundwater uptake by woody vegetation in a semiarid oak savanna. Water Resour Res 46:14. doi:10.​1029/​2009WR008902 CrossRef
    Namias J (1982) Anatomy of great plains protracted heat waves (especially the 1980 U.S. summer drought). Mon Weather Rev 110:824–838CrossRef
    Niu G-Y, Yang Z-L, Mitchell KE et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res 116:19. doi:10.​1029/​2010JD015139
    Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549CrossRef
    Pitman AJ, Henderson-Sellers A, Desborough CE et al (1999) Key results and implications from phase 1(c) of the project for intercomparison of land-surface parametrization schemes. Clim Dyn 15:673–684. doi:10.​1007/​s003820050309 CrossRef
    Rihani JF, Maxwell RM, Chow FK (2010) Coupling groundwater and land surface processes: idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes. Water Resour Res 46:14. doi:10.​1029/​2010WR009111 CrossRef
    Schaap MG, Leij FJ (1998) Database-related accuracy and uncertainty of pedotransfer functions. Soil Sci 163:765–779CrossRef
    Schneider JM, Fisher DK, Elliot RL et al (2003) Spatiotemporal variations in soil water: first results from the ARM SGP CART network. J Hydrometeorol 4:106–120CrossRef
    Schubert SD, Suarez MJ, Pegion PJ et al (2004) On the cause of the 1930s dust bowl. Science 303:1855–1859CrossRef
    Scibek J, Allen DM (2006) Modeled impacts of predicted climate change on recharge and groundwater levels. Water Resour Res 42:18. doi:10.​1029/​2005WR004742 CrossRef
    Sellers PJ, Berry JA, Collatz GJ et al (1992) Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens Environ 42:187–216. doi:10.​1016/​0034-4257(92)90102-P CrossRef
    Siqueira M, Katul G, Porporato A (2008) Onset of water stress, hysteresis in plant conductance, and hydraulic lift: scaling soil water dynamics from millimeters to meters. Water Resour Res 44:14. doi:10.​1029/​2007WR006094 CrossRef
    Sivandran G, Bras RL (2012) Identifying the optimal spatially and temporally invariant root distribution for a semiarid environment. Water Resour Res 48:13. doi:10.​1029/​2012WR012055 CrossRef
    Sridhar V, Elliot RL, Chen F, Brotzge JA (2002) Validation of the NOAH-OSU land surface model using surface flux measurements in Oklahoma. J Geophys Res 107:4418. doi:10.​1029/​2001JD001306 CrossRef
    Syed TH, Famiglietti JS, Rodell M et al (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res 44:15. doi:10.​1029/​2006WR005779 CrossRef
    Trenberth KE, Smith L, Qian T et al (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8:758–769. doi:10.​1175/​JHM600.​1 CrossRef
    Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323. doi:10.​1175/​2008BAMS2634.​1 CrossRef
    Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am 44:892–898CrossRef
    Verhoef A, Egea G (2014) Modeling plant transpiration under limited soil water: comparison of different plant and soil hydraulic parameterizations and preliminary implications for their use in land surface models. Agric For Meteorol 191:22–32. doi:10.​1016/​j.​agrformet.​2014.​02.​009 CrossRef
    Williams DG, Cable W, Hultine K et al (2004) Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric For Meteorol 125:241–258. doi:10.​1016/​j.​agrformet.​2004.​04.​008 CrossRef
    Wilson KB, Hanson PJ, Mulholland PJ et al (2001) A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric For Meteorol 106:153–168. doi:10.​1016/​S0168-1923(00)00199-4 CrossRef
    Woodhouse CA, Lukas JJ, Brown PM (2002) Drought in the western great plains, 1845–56: impacts and implications. Bull Am Meteorol Soc 83:1485–1493. doi:10.​1175/​BAMS-83-10-1485 CrossRef
    Xue Y, Sellers PJ, Kinter JL, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4:345–364CrossRef
    Zeng X, Dai Y-J, Dickinson RE, Shaikh M (1998) The role of root distribution for climate simulation over land. Geophys Res Lett 25:4533–4536. doi:10.​1029/​1998GL900216 CrossRef
  • 作者单位:Ian M. Ferguson (1)
    Jennifer L. Jefferson (2)
    Reed M. Maxwell (2) (3)
    Stefan J. Kollet (4)

    1. Bureau of Reclamation, Denver Federal Center, 6th Avenue and Kipling, Building 67, Lakewood, CO, USA
    2. Hydrologic Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
    3. Department of Geology and Geological Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
    4. Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Institute for Bio- and Geosciences, Agrosphere (IBG-3), Research Centre Jülich, 52425, Jülich, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
Roots connect water stored beneath the Earth’s surface to water in the atmosphere. The fully integrated hydrologic model ParFlow coupled to the Common Land Model is used to investigate the influence of the root uptake formulation on simulated water and energy fluxes and budgets at local and watershed scales. The effects of four functional representations of vegetation water stress and plant wilting behavior are evaluated in the semi-arid Little Washita watershed of the Southern Great Plains, USA. Monthly mean latent and sensible heat fluxes differ by more than 25 W m−2 over much of the study area during hot, dry summer conditions. This difference indicates that the root uptake formulation has a substantial impact on simulated land energy fluxes and land–atmosphere interactions. Differences in annual evapotranspiration and stream discharge over the watershed exceed 14.5 and 55.5 % between simulations, respectively, demonstrating significant impacts on simulated water budgets. Notably, the analysis reveals that spatial variability in the sensitivity of local-scale water and energy fluxes to root uptake formulation is primarily driven by feedbacks between water table dynamics, soil moisture, and land energy fluxes. These results have important implications for model development, calibration, and validation. Keywords Integrated model Root uptake Vegetation water stress Wilting behavior Energy flux

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700