Application of Partial Volume Effect Correction and 4D PET in the Quantification of FDG Avid Lung Lesions
详细信息    查看全文
  • 作者:Ali Salavati (1)
    Samuel Borofsky (1)
    Teo K. Boon-Keng (2)
    Sina Houshmand (1)
    Benjapa Khiewvan (1)
    Babak Saboury (1)
    Ion Codreanu (1)
    Drew A. Torigian (1)
    Habib Zaidi (3) (4) (5)
    Abass Alavi (1)

    1. Department of Radiology
    ; Hospital of the University of Pennsylvania ; 3400 Spruce Street ; Philadelphia ; PA ; USA
    2. Department of Radiation Oncology
    ; Hospital of the University of Pennsylvania ; Philadelphia ; PA ; USA
    3. Division of Nuclear Medicine and Molecular Imaging
    ; Geneva University Hospital ; CH-1211 ; Geneva ; Switzerland
    4. Geneva Neuroscience Center
    ; Geneva University ; CH-1211 ; Geneva ; Switzerland
    5. Department of Nuclear Medicine and Molecular Imaging
    ; University Medical Center Groningen ; University of Groningen ; 9700 RB ; Groningen ; The Netherlands
  • 关键词:FDG ; PET/CT ; Respiratory gating ; Partial volume effect ; Metabolic activity quantification ; Lung cancer
  • 刊名:Molecular Imaging and Biology
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:17
  • 期:1
  • 页码:140-148
  • 全文大小:1,261 KB
  • 参考文献:1. Gould MK, Kuschner WG, Rydzak CE et al (2003) Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med 139:879鈥?92 CrossRef
    2. Paulino AC, Thorstad WL, Fox T (2003) Role of fusion in radiotherapy treatment planning. Semin Nucl Med 33:238鈥?43 CrossRef
    3. Salavati A, Basu S, Heidari P, Alavi A (2009) Impact of fluorodeoxyglucose PET on the management of esophageal cancer. Nucl Med Commun 30:95鈥?16 CrossRef
    4. Erdi YE, Nehmeh SA, Pan T et al (2004) The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 45:1287鈥?292
    5. Daouk J, Fin L, Bailly P, Meyer ME (2009) Respiratory-gated positron emission tomography and breath-hold computed tomography coupling to reduce the influence of respiratory motion: methodology and feasibility. Acta Radiol 50:144鈥?55 CrossRef
    6. Nehmeh SA, Erdi YE, Meirelles GS et al (2007) Deep-inspiration breath-hold PET/CT of the thorax. J Nucl Med 48:22鈥?6
    7. Liu C, Alessio A, Pierce L et al (2010) Quiescent period respiratory gating for PET/CT. Med Phys 37:5037鈥?043 CrossRef
    8. Li T, Thorndyke B, Schreibmann E, Yang Y, Xing L (2006) Model-based image reconstruction for four-dimensional PET. Med Phys 33:1288鈥?298 CrossRef
    9. Rahmim A, Tang J, Zaidi H (2009) Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med Phys 36:3654鈥?670 CrossRef
    10. Kesner AL, Kuntner C (2010) A new fast and fully automated software based algorithm for extracting respiratory signal from raw PET data and its comparison to other methods. Med Phys 37:5550鈥?559 CrossRef
    11. Nehmeh SA, Erdi YE (2008) Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 38:167鈥?76 CrossRef
    12. He J, O鈥橩eefe GJ, Jones G et al (2007) Evaluation of geometrical sensitivity for respiratory motion gating by GATE and NCAT simulation. Conf Proc IEEE Eng Med Biol Soc 2007:4165鈥?168
    13. Dawood M, Lang N, Jiang X, Schafers KP (2006) Lung motion correction on respiratory gated 3-D PET/CT images. IEEE Trans Med Imaging 25:476鈥?85 CrossRef
    14. Nehmeh SA, Erdi YE, Ling CC et al (2002) Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 43:876鈥?81
    15. Chang G, Chang T, Pan T, Clark JW Jr, Mawlawi OR (2010) Implementation of an automated respiratory amplitude gating technique for PET/CT: clinical evaluation. J Nucl Med 51:16鈥?4 CrossRef
    16. Teo BK, Saboury B, Munbodh R et al (2012) The effect of breathing irregularities on quantitative accuracy of respiratory gated PETCT. Med Phys 39:7390鈥?397 CrossRef
    17. Basu S, Alavi A (2008) Feasibility of automated partial-volume correction of SUVs in current PET/CT scanners: can manufacturers provide integrated, ready-to-use software? J Nucl Med 49:1031鈥?032. doi:10.2967/jnumed.108.050401 , author reply 1032鈥?033 CrossRef
    18. Hofheinz F, Langner J, Petr J et al (2012) A method for model-free partial volume correction in oncological PET. EJNMMI Res 2:16 CrossRef
    19. Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48:932鈥?45 CrossRef
    20. Basu S, Zaidi H, Houseni M et al (2007) Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin Nucl Med 37:223鈥?39 CrossRef
    21. Rousset O, Rahmim A, Alavi A, Zaidi H (2007) Partial volume correction strategies in PET. PET Clin 2:235鈥?49 CrossRef
    22. Chang G, Chang T, Pan T, Clark JW Jr, Mawlawi OR (2010) Joint correction of respiratory motion artifact and partial volume effect in lung/thoracic PET/CT imaging. Med Phys 37:6221鈥?232 CrossRef
    23. Torigian DA, Lopez RF, Alapati S et al (2011) Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volume corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDG-PET/CT. Hell J Nucl Med 14:8鈥?4
    24. Schaefer A, Kim YJ, Kremp S et al (2013) PET-based delineation of tumour volumes in lung cancer: comparison with pathological findings. Eur J Nucl Med Mol Imaging 40:1233鈥?244 CrossRef
    25. Saboury B, Salavati A, Brothers A et al (2014) FDG PET/CT in Crohn鈥檚 disease: correlation of quantitative FDG PET/CT parameters with clinical and endoscopic surrogate markers of disease activity. Eur J Nucl Med Mol Imaging 41:605鈥?14 CrossRef
    26. Abdulla S, Salavati A, Saboury B, Basu S, Torigian DA, Alavi A (2014) Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study. Eur J Nucl Med Mol Imaging 41:350鈥?56 CrossRef
    27. Hickeson M, Yun MJ, Matthies A et al (2002) Use of a corrected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nodules on FDG-PET. Eur J Nucl Med Mol Imaging 29:1639鈥?647 CrossRef
    28. Vanderhoek M, Perlman SB, Jeraj R (2012) Impact of the definition of peak standardized uptake value on quantification of treatment response. J Nucl Med 53:4鈥?1 CrossRef
    29. Pepin A, Daouk J, Bailly P, Hapdey S, Meyer ME (2014) Management of respiratory motion in PET/computed tomography: the state of the art. Nucl Med Commun 35:113鈥?22 CrossRef
    30. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307鈥?10 CrossRef
    31. Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255鈥?68 CrossRef
    32. Barnhart HX, Haber M, Song J (2002) Overall concordance correlation coefficient for evaluating agreement among multiple observers. Biometrics 58:1020鈥?027 CrossRef
    33. Aristophanous M, Berbeco RI, Killoran JH et al (2012) Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning. Int J Radiat Oncol Biol Phys 82:e99鈥?05 CrossRef
    34. Kawano T, Ohtake E, Inoue T (2008) Deep-inspiration breath-hold PET/CT of lung cancer: maximum standardized uptake value analysis of 108 patients. J Nucl Med 49:1223鈥?231 CrossRef
    35. Daou D (2008) Respiratory motion handling is mandatory to accomplish the high-resolution PET destiny. Eur J Nucl Med Mol Imaging 35:1961鈥?970 CrossRef
    36. Schafers KP, Stegger L (2008) Combined imaging of molecular function and morphology with PET/CT and SPECT/CT: image fusion and motion correction. Basic Res Cardiol 103:191鈥?99 CrossRef
    37. Nehmeh SA, Erdi YE, Pan T et al (2004) Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 31:3179鈥?186 CrossRef
    38. Dawood M, Buther F, Stegger L et al (2009) Optimal number of respiratory gates in positron emission tomography: a cardiac patient study. Med Phys 36:1775鈥?784 CrossRef
    39. Kini VR, Vedam SS, Keall PJ, Patil S, Chen C, Mohan R (2003) Patient training in respiratory-gated radiotherapy. Med Dosim 28:7鈥?1 CrossRef
    40. Lupi A, Zaroccolo M, Salgarello M, Malfatti V, Zanco P (2009) The effect of 18F-FDG-PET/CT respiratory gating on detected metabolic activity in lung lesions. Ann Nucl Med 23:191鈥?96 CrossRef
    41. Jiang SB (2006) Technical aspects of image-guided respiration-gated radiation therapy. Med Dosim 31:141鈥?51 CrossRef
    42. Salavati A, Saboury B, Alavi A (2014) Comment on: 鈥渢umor aggressiveness and patient outcome in cancer of the pancreas assessed by dynamic 18聽F-FDG PET/CT鈥? J Nucl Med 55:350鈥?51 CrossRef
    43. Zaidi H, El Naqa I (2010) PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 37:2165鈥?187 CrossRef
  • 刊物主题:Imaging / Radiology;
  • 出版者:Springer US
  • ISSN:1860-2002
文摘
Purpose The aim of this study is to assess a software-based method with semiautomated correction for partial volume effect (PVE) to quantify the metabolic activity of pulmonary malignancies in patients who underwent non-gated and respiratory-gated 2-deoxy-2-[18F]fluoro-d-glucose (FDG)-positron emission tomography (PET)/x-ray computed tomography(CT). Procedures The study included 106 lesions of 55 lung cancer patients who underwent respiratory-gated FDG-PET/CT for radiation therapy treatment planning. Volumetric PET/CT parameters were determined by using 4D PET/CT and non-gated PET/CT images. We used a semiautomated program employing an adaptive contrast-oriented thresholding algorithm for lesion delineation as well as a lesion-based partial volume effect correction algorithm. We compared respiratory-gated parameters with non-gated parameters by using pairwise comparison and interclass correlation coefficient assessment. In a multivariable regression analysis, we also examined factors, which can affect quantification accuracy, including the size of lesion and the location of tumor. Results This study showed that quantification of volumetric parameters of 4D PET/CT images using an adaptive contrast-oriented thresholding algorithm and 3D lesion-based partial volume correction is feasible. We observed slight increase in FDG uptake by using PET/CT volumetric parameters in comparison of highest respiratory-gated values with non-gated values. After correction for partial volume effect, the mean standardized uptake value (SUVmean) and total lesion glycolysis (TLG) increased substantially (p value PET/CT scans. Regression analysis showed that tumor volume was the main predictor of quantification inaccuracy caused by partial volume effect. Conclusions Based on this study, assessment of volumetric PET/CT parameters and partial volume effect correction for accurate quantification of lung malignant lesions by using respiratory non-gated PET images are feasible and it is comparable to gated measurements. Partial volume correction increased both the respiratory-gated and non-gated values significantly and appears to be the dominant source of quantification error of lung lesions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700