Molecular Structure Evaluation of Wheat Gluten during Frozen Storage
详细信息    查看全文
文摘
The effects of frozen storage (0–120 day) on the secondary structure and molecular chain conformation of hydrated gluten were investigated using Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). After frozen storage, no changes were observed in the secondary structure of the 60% hydrated gluten; spectra were consistent with a tight ordered structure with many interchain hydrogen bond interactions. For the dehydrated gluten, more complex changes took place: during frozen storage for up to 60 days, there were distinctive changes in the low-frequency region of the amide I band (1618–1633 cm−1) which were attributed to changes in the β-sheet structure. However, with the increase of frozen storage from 60 to 120 days, a band near 1614 cm−1 replaced that at 1659 cm−1 illustrate that the formation of protein aggregates during the long-time frozen storage, which along with the establishment of new intermolecular non-covalent bonds within the protein molecule or between two neighboring molecules. AFM images showed that the gluten chain formed a fibril-like branched network, and this network was weakened with increasing frozen storage time.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700