Large work function shift of organic semiconductors inducing enhanced interfacial electron transfer in organic optoelectronics enabled by porphyrin aggregated nanostructures
详细信息    查看全文
  • 作者:Maria Vasilopoulou (1)
    Antonios M. Douvas (1)
    Dimitra G. Georgiadou (1)
    Vassilios Constantoudis (1)
    Dimitris Davazoglou (1)
    Stella Kennou (2)
    Leonidas C. Palilis (3)
    Dimitra Daphnomili (4)
    Athanassios G. Coutsolelos (4)
    Panagiotis Argitis (1)
  • 关键词:porphyrins ; OLEDs ; OPVs ; aggregates
  • 刊名:Nano Research
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:7
  • 期:5
  • 页码:679-693
  • 全文大小:
  • 参考文献:1. Elemans, J.; Van Hameren, R.; Nolte, R. J. M.; Rowan, A. E. Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. / Adv. Mater. 2006, / 18, 1251-266. CrossRef
    2. Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. A field guide to foldamers. / Chem. Rev. 2001, / 101, 3893-011. CrossRef
    3. Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. / Science 2001, / 294, 1684-688. CrossRef
    4. Wang, Z. C.; Li, Z. Y.; Medforth, C. J.; Shelnutt, J. A. Self-assembly and self-metallization of porphyrin nanosheets. / J. Am. Chem. Soc. 2007, / 129, 2440-441. CrossRef
    5. Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular nanotube architectures based on amphiphilic molecules. / Chem. Rev. 2005, / 105, 1401-443. CrossRef
    6. He, Y.; Ye, T.; Borguet, E. Porphyrin self-assembly at electrochemical interfaces: Role of potential modulated surface mobility. / J. Am. Chem. Soc. 2002, / 124, 11964-1970. CrossRef
    7. Takahashi, R.; Kobuke, Y. Hexameric macroring of gable-porphyrins as a light-harvesting antenna mimic. / J. Am. Chem. Soc. 2003, / 125, 2372-373. CrossRef
    8. Johnson, D. G.; Niemczyk, M. P.; Minsek, D. W.; Wiederrecht, G. P.; Svec, W. A.; Gaines, G. L.; Wasielewski, M. R. Photochemical electron transfer in chlorophyll-porphyrin-quinone triads: The role of the porphyrin-bridging molecule. / J. Am. Chem. Soc. 1993, / 115, 5692-701. CrossRef
    9. Grimsdale, A. C.; Mullen, K. The chemistry of organic nanomaterials. / Angew. Chem., Int. Ed. 2005, / 44, 5592-629. CrossRef
    10. Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. About supramolecular assemblies of pi-conjugated systems. / Chem. Rev. 2005, / 105, 1491-546. CrossRef
    11. Minari, T.; Seto, M.; Nemoto, T.; Isoda, S.; Tsukagoshi, K.; Aoyagi, Y. Molecular-packing-enhanced charge transport in organic field-effect transistors based on semiconducting porphyrin crystals. / Appl. Phys. Lett. 2007, / 91, 123501. CrossRef
    12. Wu, L.; Feng, L. Y.; Ren, J. S.; Qu, X. G. Electrochemical detection of dopamine using porphyrin-functionalized graphene. / Biosens. Bioelectron. 2012, / 34, 57-2. CrossRef
    13. Ng, K. K.; Lovell, J. F.; Vedadi, A.; Hajian, T.; Zheng, G. Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications. / ACS Nano 2013, / 7, 3484-490. CrossRef
    14. Lazarides, T.; Sazanovich, I. V.; Simaan, A. J.; Kafentzi, M. C.; Delor, M.; Mekmouche, Y.; Faure, B.; Reglier, M.; Weinstein, J. A.; Coutsolelos, A. G. et al. Visible light-driven O2 reduction by a porphyrin-laccase system. / J. Am. Chem. Soc. 2013, / 135, 3095-103. CrossRef
    15. Leininger, S.; Olenyuk, B.; Stang, P. J. Self-assembly of discrete cyclic nanostructures mediated by transition metals. / Chem. Rev. 2000, / 100, 853-07. CrossRef
    16. Hoang, M. H.; Kim, Y.; Kim, M.; Kim, K. H.; Lee, T. W.; Nguyen, D. N.; Kim, S. J.; Lee, K.; Lee, S. J.; Choi, D. H. Unusually high-performing organic field-effect transistors based on π-extended semiconducting porphyrins. / Adv. Mater. 2012, / 24, 5363-367. CrossRef
    17. Burrows, P. E.; Forrest, S. R.; Sibley, S. P.; Thompson, M. E. Color-tunable organic light-emitting devices. / Appl. Phys. Lett. 1996, / 69, 2959-961. CrossRef
    18. Borek, C.; Hanson, K.; Djurovich, P. I.; Thompson, M. E.; Aznavour, K.; Bau, R.; Sun, Y. R.; Forrest, S. R.; Brooks, J.; Michalski, L. et al. Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex. / Angew. Chem., Int. Ed. 2007, / 46, 1109-112. CrossRef
    19. Ostrowski, J. C.; Susumu, K.; Robinson, M. R.; Therien, M. J.; Bazan, G. C. Near-infrared electroluminescent light-emitting devices based on ethyne-bridged porphyrin fluorophores. / Adv. Mater. 2003, / 15, 1296-300. CrossRef
    20. Shao, Y.; Yang, Y. Efficient organic heterojunction photovoltaic cells based on triplet materials. / Adv. Mater. 2005, / 17, 2841-844. CrossRef
    21. Perez, M. D.; Borek, C.; Djurovich, P. I.; Mayo, E. I.; Lunt, R. R.; Forrest, S. R.; Thompson, M. E. Organic photovoltaics using tetraphenylbenzoporphyrin complexes as donor layers. / Adv. Mater. 2009, / 21, 1517-520. CrossRef
    22. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. / Science 1995, / 270, 1789-791. CrossRef
    23. VanSlyke, S. A.; Chen, C. H.; Tang, C. W. Organic electroluminescent devices with improved stability. / Appl. Phys. Lett. 1996, / 69, 2160-162. CrossRef
    24. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M. et al. Electroluminescence in conjugated polymers. / Nature 1999, / 397, 121-28. CrossRef
    25. Chen, H. Y.; Hou, J. H.; Zhang, S. Q.; Liang, Y. Y.; Yang, G. W.; Yang, Y.; Yu, L. P.; Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency. / Nat. Photonics 2009, / 3, 649-53. CrossRef
    26. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency tables (version 41). / Prog. Photovoltaics 2013, / 21, 1-1. CrossRef
    27. Ma, H.; Yip, H. L.; Huang, F.; Jen, A. K. Y. Interface engineering for organic electronics. / Adv. Funct. Mater. 2010, / 20, 1371-388. CrossRef
    28. Sessolo, M.; Bolink, H. J. Hybrid organic-inorganic light-emitting diodes. / Adv. Mater. 2011, / 23, 1829-845. CrossRef
    29. Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganas, O.; Manca, J. V. On the origin of the open-circuit voltage of polymer-fullerene solar cells. / Nat. Mater. 2009, / 8, 904-09. CrossRef
    30. Yuan, Y. B.; Reece, T. J.; Sharma, P.; Poddar, S.; Ducharme, S.; Gruverman, A.; Yang, Y.; Huang, J. S. Efficiency enhancement in organic solar cells with ferroelectric polymers. / Nat. Mater. 2011, / 10, 296-02. CrossRef
    31. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. / Nature 2004, / 428, 911-18. CrossRef
    32. Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S. J.; Williams, S. P. Polymer-fullerene bulk-heterojunction solar cells. / Adv. Mater. 2010, / 22, 3839-856. CrossRef
    33. Veldman, D.; Meskers, S. C. J.; Janssen, R. A. J. The energy of charge-transfer states in electron donor-acceptor blends: Insight into the energy losses in organic solar cells. / Adv. Funct. Mater. 2009, / 19, 1939-948. CrossRef
    34. Haque, S. A.; Koops, S.; Tokmoldin, N.; Durrant, J. R.; Huang, J. S.; Bradley, D. D. C.; Palomares, E. A multilayered polymer light-emitting diode using a nanocrystalline metal-oxide film as a charge-injection electrode. / Adv. Mater. 2007, / 19, 683-87. CrossRef
    35. Bolink, H. J.; Coronado, E.; Orozco, J.; Sessolo, M. Efficient polymer light-emitting diode using air-stable metal oxides as electrodes. / Adv. Mater. 2009, / 21, 79-2. CrossRef
    36. Kabra, D.; Lu, L. P.; Song, M. H.; Snaith, H. J.; Friend, R. H. Efficient single-layer polymer light-emitting diodes. / Adv. Mater. 2010, / 22, 3194-198. CrossRef
    37. Lee, B. R.; Choi, H.; SunPark, J.; Lee, H. J.; Kim, S. O.; Kim, J. Y.; Song, M. H. Surface modification of metal oxide using ionic liquid molecules in hybrid organic-inorganic optoelectronic devices. / J. Mater. Chem. 2011, / 21, 2051-053. CrossRef
    38. Li, Y.; Zhang, D. Q.; Duan, L.; Zhang, R.; Wang, L. D.; Qiu, Y. Elucidation of the electron injection mechanism of evaporated cesium carbonate cathode interlayer for organic light-emitting diodes. / Appl. Phys. Lett. 2007, / 90, 12119. CrossRef
    39. Huang, J. S.; Xu, Z.; Yang, Y. Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate. / Adv. Funct. Mater. 2007, / 17, 1966-973. CrossRef
    40. Fang, J. F.; Wallikewitz, B. H.; Gao, F.; Tu, G. L.; Muller, C.; Pace, G.; Friend, R. H.; Huck, W. T. S. Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes. / J. Am. Chem. Soc. 2011, / 133, 683-85. CrossRef
    41. Hoven, C. V.; Yang, R. Q.; Garcia, A.; Crockett, V.; Heeger, A. J.; Bazan, G. C.; Nguyen, T. Q. Electron injection into organic semiconductor devices from high work function cathodes. / Proc. Natl. Acad. Sci. U.S.A. 2008, / 105, 12730-2735. CrossRef
    42. Shao, Y.; Bazan, G. C.; Heeger, A. J. Long-lifetime polymer light-emitting electrochemical cells. / Adv. Mater. 2007, / 19, 365-70. CrossRef
    43. Jin, Y.; Bazan, G. C.; Heeger, A. J.; Kim, J. Y.; Lee, K. Improved electron injection in polymer light-emitting diodes using anionic conjugated polyelectrolyte. / Appl. Phys. Lett. 2008, / 93, 123304. CrossRef
    44. Marcilla, R.; Mecerreyes, D.; Winroth, G.; Brovelli, S.; Yebra, M. D. R.; Cacialli, F. Light-emitting electrochemical cells using polymeric ionic liquid/polyfluorene blends as luminescent material. / Appl. Phys. Lett. 2010, / 96, 43308. CrossRef
    45. Xiao, L. X.; Xing, X.; Chen, Z. J.; Qu, B.; Lan, H. L.; Gong, Q. H.; Kido, J. Highly efficient electron-transporting/injecting and thermally stable naphthyridines for organic electrophosphorescent devices. / Adv. Funct. Mater. 2013, / 23, 1323-330. CrossRef
    46. Su, S. J.; Chiba, T.; Takeda, T.; Kido, J. Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs. / Adv. Mater. 2008, / 20, 2125-130. CrossRef
    47. Yoon, S. M.; Lou, S. J.; Loser, S.; Smith, J.; Chen, L. X.; Facchetti, A.; Marks, T. J. Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells. / Nano Lett. 2012, / 12, 6315-321. CrossRef
    48. Vasilopoulou, M.; Dimitrakis, P.; Georgiadou, D. G.; Velessiotis, D.; Papadimitropoulos, G.; Davazoglou, D.; Coutsolelos, A. G.; Argitis, P. Emergence of ambient temperature ferroelectricity in meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride thin films. / Appl. Phys. Lett. 2013, / 103, 22908. CrossRef
    49. Vasilopoulou, M.; Georgiadou, D. G.; Douvas, A. M.; Soultati, A.; Constantoudis, V.; Davazoglou, D.; Gardelis, S.; Palilis, L. C.; Fakis, M.; Kennou, S. et al. Porphyrin oriented self-assembled nanostructures for efficient exciton dissociation in high-performing organic photovoltaics. / J. Mater. Chem. A 2014, / 2, 182-92. CrossRef
    50. Kasha, M.; Rawls, H. R.; Ashraf El-Bayoumi, M. The exciton model in molecular spectroscopy. / Pure Appl. Chem. 1965, / 11, 371-92. CrossRef
    51. Gao, Y. N.; Zhang, X. M.; Ma, C. Q.; Li, X. Y.; Jiang, J. Z. Morphology-controlled self-assembled nanostructures of 5,15-di 4-(5-acetylsulfanylpentyloxy)phenyl porphyrin derivatives. Effect of Metal-Ligand coordination bonding on tuning the intermolecular interaction. / J. Am. Chem. Soc. 2008, / 130, 17044-7052. CrossRef
    52. Panda, M. K.; Ladomenou, K.; Coutsolelos, A. G. Porphyrins in bio-inspired transformations: Light-harvesting to solar cell. / Coord. Chem. Rev. 2012, / 256, 2601-627. CrossRef
    53. Yokoyama, D.; Sasabe, H.; Furukawa, Y.; Adachi, C.; Kido, J. Molecular stacking induced by intermolecular C-H…N hydrogen bonds leading to high carrier mobility in vacuum-deposited organic films. / Adv. Funct. Mater. 2011, / 21, 1375-382 CrossRef
    54. Bohn, P. W. Aspects of structure and energy-transport in artificial molecular assemblies. / Annu. Rev. Phys. Chem. 1993, / 44, 37-0. CrossRef
    55. Mooney, W. F.; Whitten, D. G. Energy- and electron-transfer quenching of surfactant trans-stilbenes in supported multilayers: The use of hydrophobic substrate chromophores to determine short-range distance dependence in assemblies. / J. Am. Chem. Soc. 1986, / 108, 5712-719. CrossRef
    56. Maiti, N. C.; Ravikanth, M.; Mazumdar, S.; Periasamy, N. Fluorescence dynamics of noncovalently linked porphyrin dimers, and aggregates. / J. Phys. Chem. 1995, / 99, 17192-7197. CrossRef
    57. Huijser, A.; Suijkerbuijk, B.; Gebbink, R.; Savenije, T. J.; Siebbeles, L. D. A. Efficient exciton transport in layers of self-assembled porphyrin derivatives. / J. Am. Chem. Soc. 2008, / 130, 2485-492. CrossRef
    58. Zhou, H.; Zhang, Y.; Seifter, J.; Collins, S. D.; Luo, C.; Bazan, G. C.; Ngyen, T. Q.; Heeger, A. High-efficiency polymer solar cells enhanced by solvent treatment. / Adv. Mater., 2013, / 25, 1646-652. CrossRef
    59. Vasilopoulou, M.; Douvas, A. M.; Georgiadou, D. G.; Palilis, L. C.; Kennou, S.; Sygellou, L.; Soultati, A.; Kostis, I.; Papadimitropoulos, G.; Davazoglou, D. et al. The influence of hydrogenation and oxygen vacancies on Molybdenum oxides work function and gap states for application in organic optoelectronics. / J. Am. Chem. Soc. 2012, / 134, 16178-6187. CrossRef
    60. Vasilopoulou, M.; Palilis, L. C.; Georgiadou, D. G.; Kennou, S.; Kostis, I.; Davazoglou, D.; Argitis, P. Barrierless hole injection through sub-bandgap occupied states in organic light emitting diodes using substoichiometric MoO( / x) anode interfacial layer. / Appl. Phys. Lett. 2012, / 100, 13311. CrossRef
    61. Sessolo, M.; Bolink, H. Hybrid organic-inorganic light-emitting diodes / Adv. Mater. 2011, / 23, 1829-845. CrossRef
    62. Zhang, Y.; Blom, P. W. M. Electron and hole transport in poly(fluorene-benzothiadiazole). / Appl. Phys. Lett. 2011, / 98, 143504. CrossRef
  • 作者单位:Maria Vasilopoulou (1)
    Antonios M. Douvas (1)
    Dimitra G. Georgiadou (1)
    Vassilios Constantoudis (1)
    Dimitris Davazoglou (1)
    Stella Kennou (2)
    Leonidas C. Palilis (3)
    Dimitra Daphnomili (4)
    Athanassios G. Coutsolelos (4)
    Panagiotis Argitis (1)

    1. Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research “Demokritos- 153 10 Aghia Paraskevi Attikis, Athens, Greece
    2. Department of Chemical Engineering, University of Patras, 26500, Patras, Greece
    3. Departmen of Physics, University of Patras, 26500, Patras, Greece
    4. Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, Voutes Campus, 71003, Heraklion, Crete, Greece
  • ISSN:1998-0000
文摘
We report on large work function shifts induced by the coverage of several organic semiconducting (OSC) films commonly used in organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs) with a porphyrin aggregated layer. The insertion between the organic film and the aluminum cathode of an aggregated layer based on the meso-tetrakis(1-methylpyridinium-4-yl) porphyrin chloride (porphyrin 1), with its molecules adopting a face-to-face orientation parallel to the organic substrate, results in a significant shift of the OSC work function towards lower values due to the formation of a large interfacial dipole and induces large enhancement of either the OLED or OPV device efficiency. OLEDs based on poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-2,1-3-thiadiazole)] (F8BT) and incorporating the porphyrin 1 at the cathode interface exhibited current efficiency values up to 13.8 cd/A, an almost three-fold improvement over the efficiency of 4.5 cd/A of the reference device. Accordingly, OPVs based on poly(3-hexylthiophene) (P3HT), [6,6]-phenyl-C61 butyric acid methyl ester (PC61BM) and porphyrin 1 increased their external quantum efficiencies to 4.4% relative to 2.7% for the reference device without the porphyrin layer. The incorporation of a layer based on the zinc meso-tetrakis (1-methylpyridinium-4-yl)porphyrin chloride (porphyrin 2), with its molecules adopting an edge-to-edge orientation, also introduced improvements, albeit more modest in all cases, highlighting the impact of molecular orientation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700