Improvement of the photovoltaic properties for P3HT:PCBM system annealed at the temperature in liquid crystalline regions induced by liquid crystal molecules
详细信息    查看全文
  • 作者:Jiangman Shi ; Lingjian Lv ; Weihua Zhou ; Lin Zhang
  • 关键词:Liquid crystal ; P3HT ; PCBM ; Template
  • 刊名:Polymer Bulletin
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:71
  • 期:11
  • 页码:2963-2979
  • 全文大小:1,025 KB
  • 参考文献:1. Loo YL, McCulloch I (2008) Progress and challenges in commercialization of organic electronics. MRS Bull 33(7):653-62 CrossRef
    2. Currie MJ, Mapel JK, Heidel TD, Goffri S, Baldo MA (2008) High-efficiency organic solar concentrators for photovoltaics. Science 321(5886):226-28 CrossRef
    3. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183-85 CrossRef
    4. Marks RN, Halls JJM, Bradley DDC, Friend RH, Holmes AB (1994) The photovoltaic response in poly( / p-phenylene vinylene) thin-film devices. J Phys Condens Matter 6(7):1379-394 CrossRef
    5. Dennler G, Scharber MC, Brabec CJ (2009) Polymer–fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323-338 CrossRef
    6. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon 3(11):649-53 CrossRef
    7. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864-68 CrossRef
    8. Nguyen LH, Hoppe H, Erb T, Günes S, Gobsch G, Sariciffci NS (2007) Effects of annealing on the nanomorphology and performance of poly(alkylthiophene):fullerene bulk-heterojunction solar cells. Adv Funct Mater 17(7):1071-078 CrossRef
    9. Verploegen E, Mondal R, Bettinger CJ, Sok S, Toney MF, Bao ZN (2010) Effects of thermal annealing upon the morphology of polymer–fullerene blends. Adv Funct Mater 20(20):3519-529 CrossRef
    10. Lloyd MT, Mayer AC, Subramanian S, Mourey DA, Herman DJ, Bapat AV, Anthony JE, Milliaras GG (2007) Efficient solution-processed photovoltaic cells based on an anthradithiophene/fullerene blend. J Am Chem Soc 129(29):9144-149 CrossRef
    11. Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13(1):85-8 CrossRef
    12. Lim E, Lee S, Lee KK (2011) Improved photovoltaic performance of P3HT: PCBM cells by addition of a low band-gap oligomer. Chem Commun 47(3):914-16 CrossRef
    13. Bao Z, Dodabalapur A, Lovinger AJ (1996) Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett 69(26):4108-110 CrossRef
    14. Berson S, De BR, Bailly S, Guillerez S (2007) Poly(3-hexylthiophene) fibers for photovoltaic applications. Adv Funct Mater 17(8):1377-384 CrossRef
    15. Chang YM, Wang L (2008) Efficient poly(3-hexylthiophene)-based bulk heterojunction solar cells fabricated by an annealing-free approach. J Phys Chem C 112(45):17716-7720 CrossRef
    16. Liu J, Han Y (2012) The influence of additive property on performance of organic bulk heterojunction solar cells. Polym Bull 68(8):2145-174 CrossRef
    17. Mulherin RC, Jung S, Huettner S, Johnson K, Kohn P, Sommer M, Allard S, Scherf U, Greenham NC (2011) Ternary photovoltaic blends incorporating an all-conjugated donor–acceptor diblock copolymer. Nano Lett 11(11):4846-851 CrossRef
    18. Telkes M (1952) Nucleation of supersaturated inorganic salt solutions. Ind Eng Chem 44(6):1308-310 CrossRef
    19. Wu IC, Lai CH, Chen DY (2008) Cu (I) chelated poly-alkoxythiophene enhancing photovoltaic device composed of a P3HT/PCBM heterojunction system. J Mater Chem 18(36):4297-303 CrossRef
    20. Honda S, Nogami T, Ohkita H, Benten H, Ito S (2009) Improvement of the light-harvesting efficiency in polymer/fullerene bulk heterojunction solar cells by interfacial dye modification. ACS Appl Mater Interfaces 1(4):804-10 CrossRef
    21. Kim JB, Allen K, Oh SJ, Lee S, Toney MF, Kim YS, Kagan CR, Nuckolls C, Loo YL (2010) Small-molecule thiophene-C60 dyads as compatibilizers in inverted polymer solar cells. Chem Mater 22(20):5762-773 CrossRef
    22. Lee JU, Jung JW, Emrick T, Russell TP, Jo WH (2010) Morphology control of a polythiophene–fullerene bulk heterojunction for enhancement of the high-temperature stability of solar cell performance by a new donor-acceptor diblock copolymer. Nanotechnology 21(10):105201 CrossRef
    23. Yang C, Lee JK, Heeger AJ, Wudl F (2009) Well-defined donor–acceptor rod–coil diblock copolymers based on P3HT containing C60: the morphology and role as a surfactant in bulk-heterojunction solar cell. J Mater Chem 19(30):5416-423 CrossRef
    24. Jeong S, Kwon YH, Choi BD, Ade H (2010) Improved efficiency of bulk heterojunction poly(3-hexylthiophene):[6, 6]-phenyl-C61-butyric acid methyl ester photovoltaic devices using discotic liquid crystal additives. Appl Phys Lett 96:183305 CrossRef
    25. Lou Y, Wang Z, Naka S, Okada H (2011) Enhanced short-circuit current density in poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6) C61 based organic solar cells by doping small molecular perylene. Appl Phys Lett 99:033305 CrossRef
    26. Wei HT, Zhang H, Sun HZ, Yu WL, Liu Y, Chen ZL, Cui LY, Tian WJ, Yang B (2012) Aqueous-solution-processed PPV-CdxHg1-xTe hybrid solar cells with a significant near-infrared contribution. J Mater Chem 22(34):17827-7832 CrossRef
    27. Cheng YJ, Hsieh CH, Li PJ, Hsu CS (2011) Morphological stabilization by in situ polymerization of fullerene derivatives leading to efficient, thermally stable organic photovoltaics. Adv Funct Mater 21(9):1723-732 CrossRef
    28. Keith HD, Padden FJ (2004) Spherulitic crystallization from the melt. I. Fractionation and impurity segregation and their influence on crystalline morphology. J Appl Phys 35(4):1270-285 CrossRef
    29. Huang JH, Velusamy M, Ho KC, Huang JH, Velusamy M, Ho KC, Lin JT, Chu CW (2010) A ternary cascade structure enhances the efficiency of polymer solar cells. J Mater Chem 20(14):2820-825 CrossRef
    30. Brown PJ, Thomas DS, K?hler A, Wilson JS, Kim JS, Ramsdale CM, Sirringhaus H, Friend RH (2003) Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys Rev B 67(6):064203 CrossRef
    31. Sharma SS, Sharma GD, Mikroyannidis JA (2011) Improved power conversion efficiency of bulk heterojunction poly(3-hexylthiophene): PCBM photovoltaic devices using small molecule additive. Sol Energy Mater Sol Cells 95(4):1219-223 CrossRef
    32. Ngo TT, Nguyen DN, Nguyen VT (2012) Glass transition of PCBM, P3HT and their blends in quenched state. Adv Nat Sci Nanosci Nanotechnol 3(4):045001 CrossRef
    33. Aiyar AR, Hong JI, Nambiar R (2011) Tunable crystallinity in regioregular poly(3-hexylthiophene) thin films and its impact on field effect mobility. Adv Funct Mater 21(14):2652-659 CrossRef
    34. Clark J, Chang JF, Spano FC, Friend RH, Silva C (2009) Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl Phys Lett 94:163306 CrossRef
    35. Chang M, Lee J, Kleinhenz N, Fu B, Reichmanis E (2014) Photoinduced anisotropic supramolecular assembly and enhanced charge transport of poly(3‐hexylthiophene) thin films. Adv Funct Mater 24(28):4457-465. doi:10.1002/adfm.201400523
    36. Kline RJ, McGehee MD, Kadnikova EN, Kadnikova EN, Liu JS, Fréchet JM (2003) Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater 15(18):1519-522 CrossRef
    37. Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schillinsky P, Waldauf C, Brabec CJ (2005) Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv Funct Mater 15(7):1193-196 CrossRef
    38. Liao HC, Tsao CS, Lin TH, Jao MH, Chuang CM, Chang SY, Huang YC (2012) Nanoparticle-tuned self-organization of a bulk heterojunction hybrid solar cell with enhanced performance. ACS Nano 6(2):1657-666 CrossRef
    39. Liao HC, Tsao CS, Lin TH, Chuang CM, Chen CY, Jeng US, Su CH, Chen YF, Su WF (2011) Quantitative nanoorganized structural evolution for a high efficiency bulk heterojunction polymer solar cell. J Am Chem Soc 133(33):13064-3073 CrossRef
    40. Ayzner AL, Wanger DD, Tassone CJ, Tolbert SH, Schwartz BJ (2008) Room to improve conjugated polymer-based solar cells: understanding how thermal annealing affects the fullerene component of a bulk heterojunction photovoltaic device. J Phys Chem C 112(48):18711-8716 CrossRef
    41. Jeong S, Woo SH, Lyu HK, Han YS (2011) Effects of a perfluorinated compound as an additive on the power conversion efficiencies of polymer solar cells. Sol Energy Mater Sol Cells 95(7):1908-914 CrossRef
  • 作者单位:Jiangman Shi (1) (2)
    Lingjian Lv (1)
    Weihua Zhou (1) (3)
    Lin Zhang (1)

    1. Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
    2. Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
    3. StateKey Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
  • ISSN:1436-2449
文摘
The poly(3-hexylthiophene):[6, 6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction organic photovoltaics (BHJ OPVs) showed a maximum value of 3.5?% by incorporating of 6?wt% nematic liquid crystals (NLCs) of 4-octyloxy-4-cyanobiphenyls (8OCB) after annealing at the temperature of 70?°C in liquid crystalline transitions. The 8OCB was immiscible with P3HT, and the melting temperature of P3HT was not influenced at 8OCB doping amount below 10?wt%. Based on the UV–vis analysis, the conjugation length and chain order of P3HT should be the highest at 8OCB content of 6?wt% after annealing at 70?°C. The reflection peak of P3HT shifted to lower positions as the annealing temperature increasing from 70 to 130?°C, indicating that PCBM and 8OCB molecules could be incorporated into the lamellar spacing of P3HT crystallites at high annealing temperatures. The improvement of the solar cell device after annealing at 70?°C is probably due to the optimized phase separation morphology and relatively higher hole mobility in P3HT:PCBM:8OCB system. The 8OCB molecules in the liquid crystalline state are supposed to be a good template for the crystallization of P3HT, as well as the phase separation between P3HT and PCBM.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700