Electronic and photophysical properties of the bend D–T–A–T–D derivatives for small-molecule organic photovoltaic (SM-OPV) solar cells: a DFT and TD-DFT investigation
详细信息    查看全文
  • 作者:Chin-Kuen Tai ; Chun-An Hsieh ; Ken-Hao Chang…
  • 刊名:Research on Chemical Intermediates
  • 出版年:2016
  • 出版时间:September 2016
  • 年:2016
  • 卷:42
  • 期:9
  • 页码:6907-6927
  • 全文大小:1,226 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Physical Chemistry
    Inorganic Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1568-5675
  • 卷排序:42
文摘
A series of D–T–A–T–D derivatives (D, electron-donating moiety; T, π-conjugated linker; A, electron-acceptor moiety) with seven electron donor moieties and various electron abilities are designed to investigate the influence of the donor on photophysical properties for small-molecule organic photovoltaic solar cells. The 4,8-dimethoxybenzodithiophene (D1), triphenyldsramine (D2), 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline (D3), 9,9-dimethyl-9H-fluorene (D4), 9-methyl-9H-carbazole (D5), 4-methyl-4H-dithieno-pyrrole (D6), and 4,4-dimethyl-4H-cyclopenta-dithiophene (D7) are adopted as the electron donor moiety. The BDTC (buta-1,3-diene-1,1,4,4-tetracarbonitrile) is used for the A moiety, and the thiophene (T) is used for the π-conjugated linker. The optimized structure of D–T–A–T–D derivatives exhibits the bend molecular conformation due to the steric effect within the A moiety. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies of these derivatives are dependent on the electron donating ability of D, which influences the open-circuit voltage and driving force. Reorganization energy suggests that these derivatives are good hole-transporting type materials. Projected density of state analysis demonstrates that in the HOMO, the electron density distribution is delocalized on the terminal D and T moieties, while in the LUMO, the electron density distribution is localized mainly on the A moiety. The maximum absorption peak, which has relatively high light harvesting efficiency, is due to the π to π* transition and can be tuned by the electron-donating ability and the resonance energy of the D moiety. The bend D6–T–A–T–D6/D7–T–A–T–D7 derivatives with D moiety of 4-methyl-4H-dithieno-pyrrole (D6) and 4,4-dimethyl-4H-cyclopenta-dithiophene (D7) are good candidates as electron donor materials for SM-OPV.KeywordsOptical materialsAb initio calculationsElectronic structureOptical properties

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700