Volatile Organic Compounds Produced by the Rhizobacterium Arthrobacter agilis UMCV2 Modulate Sorghum bicolor (Strategy II Plant) Morphogenesis and SbFRO1 Transcription
详细信息    查看全文
  • 作者:Diana Yazmin Castulo-Rubio…
  • 关键词:SbFRO1 ; Dimethylhexadecylamine ; Arthrobacter agilis UMCV2 ; Sorghum bicolor ; Plant growth ; promoting rhizobacteria ; Plant morphogenesis
  • 刊名:Journal of Plant Growth Regulation
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:34
  • 期:3
  • 页码:611-623
  • 全文大小:3,589 KB
  • 参考文献:Abadía J, Vázquez S, Rellán-álvarez R, El-Jendoubi H, Abadía A, álvarez-Fernández A, López-Millán AF (2011) Towards a knowledge-based correction of Fe chlorosis. Plant Physiol Biochem 49:471?2. doi:10.‰16/?j.?plaphy.‰11.?.′ CrossRef PubMed
    Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. Rome FAO ESA. Working paper No. 12-03
    Andaluz S, Rodríguez-Celma J, Abadía A, Abadía J, López-Millán AF (2009) Time course induction of several key enzymes in Medicago truncatula roots in response to Fe deficiency. Plant Physiol Biochem 47:1082‰88. doi:10.‰16/?j.?plaphy.‰09.?.‰9 CrossRef PubMed
    Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305?5. doi:10.‰07/?s11104-007-9233-5 CrossRef
    Balk J, Schaedler TA (2014) Iron cofactor assembly in plants. Annu Rev Plant Biol 65:125‵3. doi:10.?46/?annurev-arplant-050213-035759 CrossRef PubMed
    Chereskin BM, Castelfranco PA (1982) Effects of Fe and oxygen on chlorophyll biosynthesis II. Observations on the biosynthetic pathway in isolated etiochloroplasts. Plant Physiol 69:112?6. doi:10.?04/?pp.?.??2 CrossRef PubMed Central PubMed
    Enomoto Y, Goto F (2013) Long-distance signaling of iron deficiency in plants. In: Balu?ka F (ed) Long-distance systemic signaling and communication in plants. Springer, Berlin, pp 167?8. doi:10.‰07/?8-3-642-36470-9_?
    Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Res 12:1619?23. doi:10.?01/?gr.?8202 CrossRef PubMed Central PubMed
    Hindt N, Gerinot ML (2012) Getting a sense for signals: regulation of the plant Fe deficiency response. Biochim Biophys Acta 1823:1521‵30. doi:10.‰16/?j.?bbamcr.‰12.″.?0 CrossRef PubMed Central PubMed
    Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up Fe as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335?6. doi:10.?11/?j.″65-313X.‰05.′624.?x CrossRef PubMed
    Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML (2008) Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci USA 105:10619‰624. doi:10.‰73/?pnas.?08367105 CrossRef PubMed Central PubMed
    Kang JG, van Iersel MW (2004) Nutrient solution concentration affects shoot: root ratio, leaf area ratio, and growth of subirrigated salvia (Salvia splendens). HortScience 39:49?
    Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131‵2. doi:10.?46/?annurev-arplant-042811-105522 CrossRef PubMed
    Kobayashi T, Itai RN, Nishizawa NK (2014) Iron deficiency responses in rice roots. Rice 7:27CrossRef PubMed
    Li S, Zhou X, Huang Y, Zhu L, Zhang S, Zhao Y, Guo J, Chen J, Chen R (2013) Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol 13:10?86CrossRef
    Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97:9155?64. doi:10.‰07/?s00253-013-5193-2 CrossRef PubMed
    Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN (2010) The bHLH transcription factor POPEYE regulates response to Fe deficiency in Arabidopsis roots. Plant Cell 22:2219′36. doi:10.?05/?tpc.?0.?4096 CrossRef PubMed Central PubMed
    Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L et al (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320. doi:10.‰38/?ncomms3320 PubMed Central PubMed
    Mikami Y, Saito A, Miwa E, Higuchi K (2011) Allocation of Fe and ferric chelate reductase activities in mesophyll cells of barley and sorghum under Fe-deficient conditions. Plant Physiol Biochem 49:513?9. doi:10.‰16/?j.?plaphy.‰11.?.‰9 CrossRef PubMed
    Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178?90. doi:10.‰07/?s00425-005-0165-0 CrossRef PubMed
    Müller I, Schmid B, Weiner J (2000) The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect Plant Ecol 3:115′7. doi:10.‰78/?33-8319-00007 CrossRef
    Orozco-Mosqueda MC, Santoyo G, Farías-Rodríguez R, Macías-Rodríguez L, Valencia-Cantero E (2012) Identification and expression analysis of multiple FRO gene copies in Medicago truncatula. Genet Mol Res 11:4402?10. doi:10.′38/‰12.?
  • 作者单位:Diana Yazmin Castulo-Rubio (1) (2)
    Nancy Araceli Alejandre-Ramírez (1)
    Ma del Carmen Orozco-Mosqueda (1)
    Gustavo Santoyo (1)
    Lourdes I. Macías-Rodríguez (1)
    Eduardo Valencia-Cantero (1)

    1. Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B5, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
    2. Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio R, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Cell Biology
    Agriculture
    Forestry
  • 出版者:Springer New York
  • ISSN:1435-8107
文摘
Different rhizobacteria may regulate plant growth using different mechanisms, including production of signal molecules that modulate plant morphogenesis and gene expression. Iron (Fe) is an essential micronutrient for plant growth and is frequently limited in plants. Plants with Strategy I Fe-uptake systems enhance root ferric reductase (FRO) activity to promote Fe absorption. Plants with Strategy II Fe-uptake systems increase Fe absorption by phytosiderophore production. However, recent reports have shown that plants with Strategy II systems also possess FRO genes that are expressed not in roots, but in shoots. Different rhizobacteria trigger plant Strategy I Fe-uptake systems via emission of volatile organic compounds (VOCs). In this work, we show that the plant growth-promoting rhizobacterium Arthrobacter agilis UMCV2 modulates the morphogenesis and FRO transcription of Sorghum bicolor, a plant with a Strategy II Fe-uptake system, via VOC emission. We found that in a system with separate compartments, VOCs emitted by A. agilis promoted plant growth, caused an increase in chlorophyll concentration, and modified the root architecture system. We tested the effect of the pure bacterial volatile compound dimethylhexadecylamine, produced by the UMCV2 strain, on plant growth and found an increase of 1.8-fold on shoot fresh weight, shoot length, chlorophyll concentration, and lateral root number at a concentration of 8 μM. This effect was dose dependent and was comparable to the effects produced by A. agilis VOCs. Simultaneously, we analyzed SbFRO1 expression using quantitative polymerase chain reaction and found that SbFRO1 expression was strongly modulated by VOCs produced by A. agilis, specifically dimethylhexadecylamine. Keywords SbFRO1 Dimethylhexadecylamine Arthrobacter agilis UMCV2 Sorghum bicolor Plant growth-promoting rhizobacteria Plant morphogenesis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700