用户名: 密码: 验证码:
A study of the region of massive star formation L379IRS1 in radio lines of methanol and other molecules
详细信息    查看全文
  • 作者:S. V. Kalenskii ; M. A. Shchurov
  • 刊名:Astronomy Reports
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:60
  • 期:4
  • 页码:438-460
  • 全文大小:998 KB
  • 参考文献:1.J. Hilton and J. F. Lahulla, Astron. J. 106, 672 (1993).ADS CrossRef
    2.M. L. Kelly and G. H. Macdonald, Mon. Not. R. Astron. Soc. 282, 401 (1996).ADS CrossRef
    3.A. J. Walsh, M. G. Burton, A. R. Hyland, and G. Robinson, Mon. Not. R. Astron. Soc. 301, 640 (1998).ADS CrossRef
    4.M. I. Pashchenko and A. M. le Skeren, Astron. Lett. 20, 69 (1994).ADS
    5.M. I. Pashchenko and E. E. Lekht, Astron. Rep. 49, 624 (2005).ADS CrossRef
    6.J. Hilton, G. J. White, N. H. Cronin, and R. Rainey, Astron. Astrophys. 154, 274 (1986).ADS
    7.L. Kogan and V. Slysh, Astrophys. J. 497, 800 (1998).ADS CrossRef
    8.V. I. Slysh, I. E. Val’tts, S. V. Kalenskii, and V. V. Golubev, Astron. Rep. 73, 785 (1999).ADS
    9.V. G. Promyslov, G. M. Larionov, and S. V. Kalenskii, Astron. Rep. 47, 276 (2003).ADS CrossRef
    10.J. T. Pottage, D. R. Flower, and S. L. Davis, J. Phys. B 35, 254 (2002).CrossRef
    11.J. T. Pottage, D. R. Flower, and S. L. Davis, Mon. Not. R. Astron. Soc. 352, 39 (2004).ADS CrossRef
    12.S. V. Kalenskii, A. V. Alakoz, and V. G. Promyslov, in Chemistry as a Diagnostic of Star Formation, Ed. by C. L. Curry and M. Fish (NRC, Ottawa, Canada, 2003), Vol. 53, p. 321.
    13.S. Leurini, P. Schilke, K. M. Menten, D. R. Flower, J. T. Pottage, and L. H. Xu, Astron. Astrophys. 422, 573 (2004).ADS CrossRef
    14.S. V. Kalenskii and S. Kurtz, Astron. Zh. (2016, in press).
    15.R. M. Lees, Astrophys. J. 184, 763 (1973).ADS CrossRef
    16.P. Friberg, Å. Hjalmarson, S. C. Madden, and W. M. Irvine, Astron. Astrophys. 195, 281 (1988).ADS
    17.E. S. Wirström, W. D. Geppert, Å. Hjalmarson, C. M. Persson, J. H. Black, P. Bergman, T. J. Millar, M. Hamberg, and E. Vigren, Astron. Astrophys. 533, A24 (2011).ADS CrossRef
    18.F. F. S. van der Tak, J. H. Black, F. L. Schöier, D. J. Jansen, and E. F. van Dishoeck, Astron. Astrophys. 468, 627 (2007).ADS CrossRef
    19.V. Hernandez-Hernandez, L. Zapata, S. Kurtz, and G. Garay, Astron. Astrophys. 568, 65 (2014).CrossRef
    20.H. G. Arce, J. Santiago-Garcia, J. K. Jorgensen, M. Tafalla, and R. Bachiller, Astrophys. J. 681, 21 (2008)ADS CrossRef
    21.S. N. Milam, C. Savage, M. A. Brewster, L. M. Ziurys, and S. Wyckoff, Astrophys. J. 634, 1126 (2005).ADS CrossRef
    22.H. E. Matthews and T. J. Sears, Astrophys. J. 267, 53 (1983).ADS CrossRef
    23.S. V. Kalenskii, V. G. Promyslov, A. V. Alakoz, A. Winnberg, and L. E. B. Johansson, Astron. Rep. 44, 725 (2000).ADS CrossRef
    24.S. R. Purcell, R. Balasubramanyam, M. G. Burton, A. J. Walsh, V. Minier, M. R. Hunt-Cunningham, L. L. Kedziora-Chudczer, S. N. Longmore, T. Hill, I. Bains, P. J. Barnes, A. L. Busfield, P. Calisse, N. H. M. Crighton, S. J. Curran, et al., Mon. Not. R. Astron. Soc. 367, 553 (2006).ADS CrossRef
    25.S. V. Kalenskii and L. E. B. Johansson, Astron. Rep. 54, 1084 (2010).ADS CrossRef
    26.A. Bacmann, V. Tarquet, A Faure, C. Kahane, and C. Ceccarelli, Astron. Astrophys. 541, L12 (2012).ADS CrossRef
    27.C. Vastel, C. Ceccarelli, B. Lefloch, and R. Bachiller, Astrophys. J. 795, L2 (2014).ADS CrossRef
    28.K. I. öberg, S. Bottinelli, J. K. Jorgensen, and E. F. van Dishoeck, Astrophys. J. 716, 825 (2010).ADS CrossRef
    29.A. Jaber, C. Ceccarelli, C. Cahane, and E. Caux, Astrophys. J. 791, 29 (2014).ADS CrossRef
    30.J. G. Mangum and Y. L. Shirley, Publ. Astron. Soc. Pacif. 127, 266 (2015)ADS CrossRef
    31.H. Ungerechts, G. Winnewisser, and C. M. Walmsley, Astron. Astrophys. 157, 207 (1986).ADS
    32.S. V. Kalenskii and L. E. B. Johansson, Astron. Rep. 54, 295 (2010).ADS CrossRef
    33.V. Wakelam, P. Caselli, C. Ceccarelli, E. Herbst, and A. Castets, Astron. Astrophys. 422, 159 (2004).ADS CrossRef
    34.V. Wakelam, F. Hersant, and F. Herpin, Astron. Astrophys. 529, A112 (2011).ADS CrossRef
  • 作者单位:S. V. Kalenskii (1)
    M. A. Shchurov (1)

    1. Astro Space Center, Lebedev Physical Institute, Russian Academy of Sciences, ul. Profsoyuznaya 84/32, Moscow, 117997, Russia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1562-6881
文摘
The results of spectral observations of the region of massive star formation L379IRS1 (IRAS18265–1517) are presented. The observations were carried out with the 30-m Pico Veleta radio telescope (Spain) at seven frequencies in the 1-mm, 2-mm, and 3-mm wavelength bands. Lines of 24 molecules were detected, from simple diatomic or triatomic species to complex eight- or nine-atom compounds such as CH3OCHO or CH3OCH3. Rotation diagrams constructed from methanol andmethyl cyanide lines were used to determine the temperature of the quiescent gas in this region, which is about 40–50 K. In addition to this warm gas, there is a hot component that is revealed through high-energy lines of methanol and methyl cyanide, molecular lines arising in hot regions, and the presence of H2O masers and Class II methanol masers at 6.7 GHz, which are also related to hot gas. One of the hot regions is probably a compact hot core, which is located near the southern submillimeter peak and is related to a group of methanol masers at 6.7 GHz. High-excitation lines at other positions may be associated with other hot cores or hot post-shock gas in the lobes of bipolar outflows. The rotation diagrams can be use to determine the column densities and abundances of methanol (10−9) and methyl cyanide (about 10−11) in the quiescent gas. The column densities of A- and E-methanol in L379IRS1 are essentually the same. The column densities of other observedmolecules were calculated assuming that the ratios of the molecular level abundances correspond to a temperature of 40 K. The molecular composition of the quiescent gas is close to that in another region of massive star formation, DR21(OH). The only appreciable difference is that the column density of SO2 in L379IRS1 is at least a factor of 20 lower than the value in DR21(OH). The SO2/CS and SO2/OCS abundance ratios, which can be used as chemical clocks, are lower in L379IRS1 than in DR21(OH), suggesting that L379IRS1 is probably younger than DR21(OH).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700