Ni(OH)2/MoS x nanocomposite electrodeposited on a flexible CNT/PI membrane as an electrochemical glucose sensor: the synergistic effect of Ni(OH) 详细信息    查看全文
  • 作者:Qin Wang ; Yan Zhang ; Weichun Ye ; Chunming Wang
  • 关键词:CNT/PI membrane ; Ni(OH)2 nanoparticles ; Molybdenum sulfide ; Nonenzymatic glucose sensor ; Electrocatalytic oxidation
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 页码:133-142
  • 全文大小:4,945 KB
  • 参考文献:1.Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825CrossRef
    2.Crouch E, Cowell DC, Hoskins S, Pittson RW, Hart JP (2005) A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink. Biosens Bioelectron 21:712–718CrossRef
    3.Nan CF, Zhang Y, Zhang GM, Dong C, Shuang SM, Choi MMF (2009) Activation of nylon net and its application to a biosensor for determination of glucose in human serum. Enzym Microb Technol 44:249–253CrossRef
    4.Jia JB, Wang BQ, Wu AG, Cheng GJ, Li Z, Dong SJ (2002) A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal Chem 74:2217–2213CrossRef
    5.Bo XJ, Bai J, Li Y, Guo LP (2011) The nanocomposite of PtPd nanoparticles/onion-like mesoporous carbon vesicle for nonenzymatic amperometric sensing of glucose. Sensors Actuators B 157:662–668CrossRef
    6.He BL, Hong LJ, Lu J, Hu JG, Yang YY, Yuan JH, Niu L (2013) A novel amperometric glucose sensor based on PtIr nanoparticles uniformly dispersed on carbon nanotubes. Electrochim Acta 91:353–360CrossRef
    7.Jena BK, Raj CR (2006) Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem Eur J 12:2702–2708CrossRef
    8.Mu Y, Jia DL, He YY, Miao YQ, Wu HL (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26:2948–2952CrossRef
    9.You TY, Niwa O, Chen ZL, Hayashi K, Tomita M, Hirono S (2003) An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal Chem 75:5191–5196CrossRef
    10.Safavi A, Maleki N, Farjami E (2009) Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosens Bioelectron 24:1655–1660CrossRef
    11.Toghill KE, Xiao L, Phillips MA, Compton RG (2010) The nonenzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode. Sensors Actuators B 147:642–652CrossRef
    12.Hutton LA, Vidotti M, Patel AN, Newton ME, Unwin PR, Macpherson JV (2011) Electrodeposition of nickel hydroxide nanoparticles on boron-doped diamond electrodes for oxidative electrocatalysis. J Phys Chem C 115:1649–1658CrossRef
    13.Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650CrossRef
    14.Budroni G, Corma A (2006) Gold-organic-inorganic high-surface area materials as precursors of highly active catalysts. Angew Chem Int Ed 45:3328–3331CrossRef
    15.Schubert MM, Hackenberg S, Veen VAC, Muhler M, Plzak V, Behm RJ (2001) CO oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal 197:113–122CrossRef
    16.Li YG, Wang HL, Xie LM, Liang YY, Hong GS, Dai HJ (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299CrossRef
    17.Zhang Y, Xu FG, Sun YJ, Shi Y, Wen ZW, Li Z (2011) Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing. J Mater Chem 21:16949–16954CrossRef
    18.Huang JW, He YQ, Jin J, Li YR, Dong ZP, Li R (2014) A novel glucose sensor based on MoS2 nanosheet functionalized with Ni nanoparticles. Electrochim Acta 136:41–46CrossRef
    19.Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150CrossRef
    20.Chang K, Chen WX (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728CrossRef
    21.Jaramillo TF, Jorgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102CrossRef
    22.Ji SS, Yang Z, Zhang C, Miao YE, Tjiu WW, Pan JS, Liu TX (2013) Nonenzymatic sensor for glucose based on a glassy carbon electrode modified with Ni(OH)2 nanoparticles grown on a film of molybdenum sulfide. Microchim Acta 180:1127–1134CrossRef
    23.Xiang Q, Yu JG, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578CrossRef
    24.Zhong X, Yang HD, Guo SJ, Li SW, Gou GL, Niu ZY, Dong ZP, Lei YJ, Jin J, Li R, Ma JT (2012) In situ growth of Ni-Fe alloy on graphene-like MoS2 for catalysis of hydrazine oxidation. J Mater Chem 22:13925–13927CrossRef
    25.Subramoney S (1998) Novel nanocarbons—structure, properties, and potential applications. Adv Mater 10:1157–1171CrossRef
    26.Geng HZ, Rosen R, Zheng B, Shimoda H, Fleming L, Liu J, Zhou O (2002) Fabrication and properties of composites of poly(ethylene oxide) and functionalized carbon nanotubes. Adv Mater 14:1387–1390CrossRef
    27.Thostenson ET, Chou TW (2006) Processing-structure-multifunctional property relationship in carbon nanotube/epoxy composites. Carbon 44:3022–3329CrossRef
    28.Zeng HL, Gao C, Wang YP, Watts PCP, Kong H, Cui XW, Yan DY (2006) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior. Polymer 47:113–122CrossRef
    29.Jiang YM, Kou HH, Li JJ, Yu SJ, Du YL, Ye WC, Wang CM (2012) Synthesis of ZnTe dendrites on multi-walled carbon nanotubes/polyimide nanocomposite membrane by electrochemical atomic layer deposition and photoelectrical property research. J Solid State Chem 194:336–342CrossRef
    30.Zhang X, Shi XZ, Wang CM (2009) Electrodeposition of Pt nanoparticles on carbon nanotubes-modified polyimide materials for electrocatalytic applications. Catal Commun 10:610–613CrossRef
    31.Ho WK, Yu JC, Lin J, Yu JG, Li PS (2004) Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 20:5865–5869CrossRef
    32.Li XL, Li YD (2004) MoS2 nanostructures: synthesis and electrochemical Mg2+ intercalation. J Phys Chem B 37:13893–13900CrossRef
    33.Deki S, Hosokawa A, Beleke AB, Mizuhata M (2009) Alpha-Ni(OH)2 thin films fabricated by liquid phase deposition method. Thin Solid Films 517:1546–1554CrossRef
    34.Huang JF (2009) Facile preparation of an ultrathin nickel film coated nanoporous gold electrode with the unique catalytic activity to oxidation of glucose. Chem Commun 10:1270–1272CrossRef
    35.Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571CrossRef
    36.Hao CX, Wen FS, Xiang JY, Wang LM, Hou H, Su ZB, Hu WT, Liu ZY (2014) Controlled incorporation of Ni(OH)2 nanoplates into flowerlike MoS2 nanosheets for flexible all-solid-state supercapacitors. Adv Funct Mater 24:6700–6707CrossRef
    37.Ye WC, Kou HH, Liu QZ, Yan JF, Zhou F, Wang CM (2012) Electrochemical deposition of Au-Pt alloy particles with cauliflower-like microstructures for electrocatalytic methanol oxidation. Int J Hydrog Energy 37:4088–4097CrossRef
    38.Khosravi M, Amini MK (2010) Carbon paper supported Pt/Au catalysts prepared via Cu underpotential deposition-redox replacement and investigation of their electrocatalytic activity for methanol oxidation and oxygen reduction reactions. Int J Hydrog Energy 35:10527–10538CrossRef
    39.Lu LM, Zhang L, Qu FL, Lu HX, Zhang XB, Wu ZS, Huan SY, Wang QA, Shen GL, Yu RQ (2009) A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. Biosens Bioelectron 25:218–223CrossRef
    40.Yi QF, Zhang JJ, Huang W, Liu XP (2007) Electrocatalytic oxidation of cyclohexanol on a nickel oxyhydroxide modified nickel electrode in alkaline solutions. Catal Commun 8:1017–1022CrossRef
    41.Qiao NQ, Zheng JB (2012) Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and grapheme. Microchim Acta 177:103–109CrossRef
    42.Deng CY, Chen JH, Chen XL, Xiao CH, Nie LH, Yao SZ (2008) Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens Bioelectron 23:1272–1277CrossRef
    43.Zhou KF, Zhu YH, Yang XL, Li CZ (2010) Electrocatalytic oxidation of glucose by the glucose oxidase immobilized in graphene-Au-nafion biocomposite. Electroanalysis 22:259–264CrossRef
    44.Shamsipur M, Najafi M, Hosseini MRM (2010) Highly improved electrooxidation of glucose at a nickel (II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 77:120–124CrossRef
    45.Jiang YM, Yu SJ, Li JJ, Jia LP, Wang CM (2013) Improvement of sensitive Ni(OH)2 nonenzymatic glucose sensor based on carbon nanotube/polyimide membrane. Carbon 63:367–375CrossRef
  • 作者单位:Qin Wang (1)
    Yan Zhang (1)
    Weichun Ye (1)
    Chunming Wang (1)

    1. College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
A nonenzymatic glucose sensor was constructed by electrodepositing molybdenum sulfide (MoS x )-nickel (II) hydroxide (Ni(OH)2) in sequence on a flexible carbon nanotube/polyimide (CNT/PI) composite membrane. The sensing material was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of the as-prepared nanomaterial toward glucose oxidation was investigated by cyclic voltammetry and amperometric measurement. The Ni(OH)2/MoS x /CNT/PI sensor demonstrated excellent properties including a wide linear range from 10 to 1600 μM of glucose, rapid response (<3 s), low detection limit of 5.4 μM, good selectivity, good repeatability, and long-term stability (2 weeks). The superior performances were attributed to the pronounced synergistic effect between Ni(OH)2 and MoS x . Furthermore, the excellent sensor was successfully applied to detect glucose in human blood serum samples by standard addition method with satisfactory recovery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700