Incident energy dependence of the scattering dynamics of water molecules on silicon and graphite surfaces: the effect on tangential momentum accommodation
详细信息    查看全文
文摘
The scattering dynamics of water molecules on solid surfaces was investigated using the molecular beam technique. In contrast to the experiments previously reported in the literature, the range of incident energy was chosen to cover the typical kinetic energies of gas molecules in equilibrium at room temperature (35–130 meV). Even in such a narrow energy range, the angular distribution of scattered molecules is heavily affected by the incident energy, exhibiting both a nearly cosine distribution and a lobular distribution, which has a clear peak close to the specular direction. Interestingly, the tangential momentum accommodation coefficients (TMACs) estimated from the scattering experiments show opposite energy dependences on graphite (0001) and silicon (100) surfaces. As the incident energy increases, the TMAC decreases on the graphite surface, whereas it increases on the silicon surface. These trends can be attributed to the relatively large adsorption energy of water molecules on these surfaces and the atomic-scale surface corrugation, although a rigorous understanding requires further analysis by molecular dynamics simulations. Our findings suggest the need for an elaborate slip-flow model that takes account of the incident energy effect to accurately analyze water vapor flow in micro/nanostructures, which is ubiquitous in nature and engineering applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700