Microstructure, mechanical, and anticorrosive properties of a new Ti-20Nb-10Zr-5Ta alloy based on nontoxic and nonallergenic elements
详细信息    查看全文
  • 作者:Monica Popa (1)
    Ecaterina Vasilescu (1)
    Paula Drob (1)
    Doina Raducanu (2)
    Jose Maria Calderon Moreno (1)
    Steliana Ivanescu (3)
    Cora Vasilescu (1) cora_vasilescu@yahoo.com
    Silviu Iulian Drob (1)
  • 关键词:Key words alloys – ; casting – ; corrosion – ; microstructure – ; scanning electron microscopy (SEM)
  • 刊名:Metals and Materials International
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:18
  • 期:4
  • 页码:639-645
  • 全文大小:1.1 MB
  • 参考文献:1. S. L. Assis, S. Wolynec, and I. Costa, Electrochim. Acta 51, 1815 (2006).
    2. C. S. Han, C. H. Bae, and J. H. Lee, Met. Mater. Int. 15, 3413 (2009).
    3. M. Takahashi, M. Kikuku, and Y. Takada, Met. Mater. Int. 17, 175 (2011).
    4. P. Laheurte, F. Prima, A. Eberhardt, T. Gloriant, M. Wary, and E. Patoor, J. Mech. Behav. Biomed. Mater. 3, 565 (2010).
    5. J.-M. Jang, S.-J. Park, G.-S. Chui, T.-Y. Kwom, and K.-H. Kim, Met. Mater. Int. 14, 457 (2008).
    6. M. P. Neupane, Y. K. Kim, H. S. Park, S. J. Lee, M. H. Lee, and T. S. Bae, Met. Mater. Int. 14, 607 (2008).
    7. M. Niinomi, J. Mech. Behav. Biomed. Mater. 1, 30 (2008).
    8. S.-J. Park, Met. Mater. Int. 14, 449 (2008).
    9. Y. Tanaka, M. Nakai, T. Akahori, M. Niinomi, Y. Tsutsumi, H. Doi, and T. Hanawa, Corros. Sci. 50, 2111 (2008).
    10. E. Eisenbarth, D. Velten, M. Muller, R. Thull, and J. Breme, Biomaterials 25, 5705 (2004).
    11. P. Thomsen, C. Larsson, L. E. Ericson, L. Sennerby, J. Lausama, and B. Kasemo, J. Mater. Sci. Mater. M. 8, 653 (1997).
    12. E. Bertrand, T. Gloriant, D. M. Gordin, E. Vasilescu, P. Drob, C. Vasilescu, and S. I. Drob, J. Mech. Behav. Biomed. Mater. 3, 559 (2010).
    13. E. Vasilescu, P. Drob, D. Raducanu, V. D. Cojocaru, I. Cinca, D. Iordachescu, R. Ion, M. Popa, and C. Vasilescu, J. Mater. Sci. Mater. M. 21, 1959 (2010).
    14. M. V. Popa, E. Vasilescu, P. Drob, C. Vasilescu, S. I. Drob, D. Mareci, and J. C. Mirza Rosca, Quim. Nova 33, 1892 (2010).
    15. M. V. Popa, I. Demetrescu, E. Vasilescu, P. Drob, A. Santana Lopez, J. Mirza-Rosca, C. Vasilescu, and D. Ionita, Electrochim. Acta 49, 2113 (2004).
    16. E. Vasilescu, P. Drob, C. Vasilescu, S. I. Drob, E. Bertrand, D. M. Gordin, and T. Gloriant, Mater. Corros. 61, 947 (2010).
    17. B. O’Brien, J. Stinson, and W. Carroll, J. Mech. Behav. Biomed. Mater. 1, 303 (2008).
    18. S. Y. Yu and J. R. Scully, Corrosion 53, 965 (1997).
    19. Y. Okazaki, S. Rao, Y. Ito, and T. Tateishi, Biomaterials 19, 1197 (1998).
    20. Y. Okazaki, Curr. Opin. Solid St. M. 5, 45 (2001).
    21. F. T. Cheng, K. H. Lo, and H. C. Man, J. Alloys Compd. 437, 322 (2007).
    22. M. Arciniegas, J. Casals, J. M. Manero, J. Pena, and F. J. Gil, J. Alloys Compd. 460, 213 (2008).
    23. H. Pan, R. Li, Y. Liu, M. Gao, H. Miao, Y. Lei, and Q. Wang, J. Alloys Compd. 463, 189 (2008).
    24. M. A. Baker, S. L. Assis, R. Grilli, and I. Costa, Surf. Interface Anal. 40, 220 (2008).
    25. M. Geetha, Y. U. Kamaki Mudali, A. K. Gogia, R. Asokamani, and R. Baldev, Corros. Sci. 46, 877 (2004).
    26. M. Karthega, V. Raman, and N. Rajendran, Acta Biomater. 3, 1019 (2007).
    27. M. F. Lopez, L. Soriano, F. J. Palomares, M. Sanchez- Agudo, G. G. Fuentes, A. Gutierrez, and J. A. Jimenez, Surf. Interface Anal. 33, 570 (2002).
    28. D. Q. Martins, W. R. Osorio, M. E. P. Souza, R. Caram, and A. Garcia, Electrochim. Acta 53, 2809 (2008).
    29. C. Morand, M. F. Lopez, A. Gutierrez, and J. A. Jimenez, Appl. Surf. Sci. 220, 79 (2003).
    30. A. Robin, O. A. S. Carvalho, S. G. Schneider, and S. Schneider, Mater. Corros. 59, 929 (2008).
    31. B. L. Wang, Y. F. Zheng, and L. C. Zhao, Mater. Corros. 60, 788, (2009).
    32. D. M. Gordin, T. Gloriant, G. Texier, I. Thibon, and D. Ansel, J. Mater. Sci.: Mater. Med. 15, 885 (2004).
    33. R. Banerjee, S. Nag, J. Stechschulte, and H. L. Fraser, Biomaterials 25, 3413 (2004).
    34. D. Mareci, R. Chelariu, D. Sutiman, D. M. Gordin, and T. Gloriant, Mater. Corros. 62, 1117 (2011).
    35. Y. Okazaki, Y. Ito, K. Kyo, and T. Tateishi, Mater. Sci. Eng. A, 213, 138 (1996).
    36. S. L. Assis and I. Costa, Mater. Corros. 58, 329 (2007).
    37. I. Cvijovic-Alagic, Z. Cvijovic, S. Mitrovic, V. Panic, and M. Rakin, Corros. Sci. 53, 796 (2011).
    38. D. J. Blackwood, A. W. C. Chua, K. H. W. Seah, R. Thampuran, and S. H. Teoh, Corros. Sci. 42, 481 (2000).
    39. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, NACE, Houston (1974).
    40. E. Blasco-Tamarit, A. Igual-Munoz, J. Garcia Anton, and D. M. Garcia-Garcia, Corros. Sci. 51, 1095 (2009).
    41. G. Sheela, M. Ramasamy, C. R. K. Rao, and M. Pushpavanam, Bull. Electrochem. 17, 347 (2001).
    42. E. Vasilescu, P. Drob, D. Raducanu, I. Cinca, D. Mareci, J. M. Calderon Moreno, M. Popa, C. Vasilescu, and J. C. Mirza Rosca, Corros. Sci. 51, 2885 (2009).
  • 作者单位:1. Department of Electrochemistry and Corrosion, Institute of Physical Chemistry 鈥淚lie Murgulescu,鈥? Romanian Academy, Bucharest, 060021 Romania2. Materials Science and Engineering Faculty, Politehnica University of Bucharest, Bucharest, 060042 Romania3. SC R&D Consulting and Services SRL, Bucharest, 023761 Romania
  • ISSN:2005-4149
文摘
For an alloy to be suitable for use as an implant material, it must have a low specific weight and Young’s modulus, good mechanical properties that are similar to those of bone, and very good corrosion resistance and biocompatibility. In this study, we have developed a novel Ti-20Nb-10Zr-5Ta alloy that is composed of nontoxic, nonallergenic, corrosion-resistant elements. This alloy has low specific weight and Young’s modulus and good mechanical properties. It has a fine microstructure with a matrix that is mainly composed of the β phase and some α phase due to recrystallization during cooling. It shows elastoplastic behavior with a fairly linear elastic behavior and low Young’s modulus (59 GPa). In addition, its ultimate tensile strength, 0.2% yield strength, and hardness are higher than those of CP Ti, commercial Ti-6Al-4V, and similar β-type alloys. It exhibited a very stable passive state and its electrochemical parameters and corrosion and ion release rates were better than those of CP Ti in Ringer’s solutions of different pH values that simulate the severe functional conditions of an implant; this is attributable to the beneficial influence of the alloying elements and to the better protective properties of the coated passive film.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700