Monoclonal Antibodies Follow Distinct Aggregation Pathways During Production-Relevant Acidic Incubation and Neutralization
详细信息    查看全文
  • 作者:Thomas Skamris ; Xinsheng Tian ; Matthias Thorolfsson…
  • 关键词:biopharmaceutics ; formulation ; monoclonal antibody ; protein stability ; small ; angle X ; ray scattering (SAXS)
  • 刊名:Pharmaceutical Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:33
  • 期:3
  • 页码:716-728
  • 全文大小:2,023 KB
  • 参考文献:1.Aggarwal RS. What’s fueling the biotech engine-2012 to 2013. Nat Biotechnol. 2014;32(1):32–9.CrossRef PubMed
    2.Poiron C, Wu Y, Ginestoux C, Ehrenmann F, Duroux P, Lefranc M. IMGT/mAb-DB: the IMGT® database for therapeutic monoclonal antibodies. Poster no101. 2010;11.
    3.Krishnan S, Pallitto MM, Ricci MS. Development of formulations for therapeutic monoclonal antibodies and Fc fusion proteins. Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals. 2010. p. 383–427.
    4.Potty ASP, Xenopoulos A. Stress-induced antibody aggregates. Bioproc Int. 2013;11(3):44–52.
    5.Andersen CB, Manno M, Rischel C, Thorolfsson M, Martorana V. Aggregation of a multidomain protein: a coagulation mechanism governs aggregation of a model IgG1 antibody under weak thermal stress. Protein Sci. 2010;19(2):279–90.PubMedCentral CrossRef PubMed
    6.Arosio P, Rima S, Morbidelli M. Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: from oligomers to larger aggregates. Pharm Res. 2013;30(3):641–54.CrossRef PubMed
    7.Tian X, Langkilde AE, Thorolfsson M, Rasmussen HB, Vestergaard B. Small-angle X-ray scattering screening complements conventional biophysical analysis: comparative structural and biophysical analysis of monoclonal antibodies IgG1, IgG2, and IgG4. J Pharm Sci. 2014;103(6):1701–10.PubMedCentral CrossRef PubMed
    8.Ito T, Tsumoto K. Effects of subclass change on the structural stability of chimeric, humanized, and human antibodies under thermal stress. Protein Sci. 2013;22(11):1542–51.PubMedCentral CrossRef PubMed
    9.Ishikawa T, Ito T, Endo R, Nakagawa K, Sawa E, Wakamatsu K. Influence of pH on heat-induced aggregation and degradation of therapeutic monoclonal antibodies. Biol Pharm Bull. 2010;33(8):1413–7.CrossRef PubMed
    10.Latypov RF, Hogan S, Lau H, Gadgil H, Liu DJ. Elucidation of acid-induced unfolding and aggregation of human immunoglobulin IgG1 and IgG2 Fc. J Biol Chem. 2012;287(2):1381–96.PubMedCentral CrossRef PubMed
    11.Garber E, Demarest SJ. A broad range of Fab stabilities within a host of therapeutic IgGs. Biochem Biophys Res Commun. 2007;355(3):751–7.CrossRef PubMed
    12.Chennamsetty N, Helk B, Voynov V, Kayser V, Trout BL. Aggregation-prone motifs in human immunoglobulin G. J Mol Biol. 2009;391(2):404–13.CrossRef PubMed
    13.Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL. Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci U S A. 2009;106(29):11937–42.PubMedCentral CrossRef PubMed
    14.Blanchet CE, Zozulya AV, Kikhney AG, Franke D, Konarev PV, Shang W, et al. Instrumental setup for high-throughput small- and wide-angle solution scattering at the X33 beamline of EMBL Hamburg. J Appl Crystallogr. 2012;45(3):489–95.CrossRef
    15.Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, et al. New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr. 2012;45:342–50.PubMedCentral CrossRef PubMed
    16.Svergun DI. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr. 1992;25:495–503.CrossRef
    17.Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2014.
    18.Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 2004;32:W665-7.CrossRef PubMed
    19.Karkov HS, Krogh BO, Woo J, Parimal S, Ahmadian H, Cramer SM. Investigation of protein selectivity in multimodal chromatography using in silico designed Fab fragment variants. Biotechnol Bioeng. 2015.
    20.Tian X, Vestergaard B, Thorolfsson M, Yang Z, Rasmussen HB, Langkilde AE. In-depth analysis of subclass-specific conformational preferences of IgG antibodies. IUCrJ. 2015;2. doi: 10.​1107/​S205225251402209​X .
    21.Mosbaek CR, Konarev PV, Svergun DI, Rischel C, Vestergaard B. High concentration formulation studies of an IgG2 antibody using small angle X-ray scattering. Pharm Res. 2012;29(8):2225–35.CrossRef PubMed
    22.Eryilmaz E, Janda A, Kim J, Cordero RJ, Cowburn D, Casadevall A. Global structures of IgG isotypes expressing identical variable regions. Mol Immunol. 2013;56(4):588–98.CrossRef PubMed
    23.Lilyestrom WG, Yadav S, Shire SJ, Scherer TM. Monoclonal antibody self-association, cluster formation, and rheology at high concentrations. J Phys Chem B. 2013;117(21):6373–84.CrossRef PubMed
  • 作者单位:Thomas Skamris (1)
    Xinsheng Tian (1)
    Matthias Thorolfsson (2)
    Hanne Sophie Karkov (2)
    Hanne B. Rasmussen (2)
    Annette E. Langkilde (1)
    Bente Vestergaard (1)

    1. Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
    2. Global Research Unit, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Pharmacology and Toxicology
    Pharmacy
    Biochemistry
    Medical Law
    Biomedical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-904X
文摘
Purpose Aggregation aspects of therapeutic monoclonal antibodies (mAbs) are of common concern to the pharmaceutical industry. Low pH treatment is applied during affinity purification and to inactivate endogenous retroviruses, directing interest to the mechanisms of acid-induced antibody aggregation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700