Putative Alginate Assimilation Process of the Marine Bacterium Saccharophagus degradans 2-40 Based on Quantitative Proteomic Analysis
详细信息    查看全文
  • 作者:Toshiyuki Takagi ; Hironobu Morisaka ; Shunsuke Aburaya…
  • 关键词:Saccharophagus degradans ; Marine bacterium ; Quantitative proteomic analysis ; Alginate ; 4 ; Deoxy ; l ; erythro ; 5 ; hexoseulose uronic acid reductase
  • 刊名:Marine Biotechnology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:18
  • 期:1
  • 页码:15-23
  • 全文大小:943 KB
  • 参考文献:Aoki W, Tatsukami Y, Kitahara N, Matsui K, Morisaka H, Kuroda K, Ueda M (2013) Elucidation of potentially virulent factors of Candida albicans during serum adaptation by using quantitative time-course proteomics. J Proteomics 91:417–429PubMed CrossRef
    Braun V (1995) Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev 16:295–307PubMed CrossRef
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238PubMed PubMedCentral CrossRef
    Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manag 51:2738–2749CrossRef
    Enquist-Newman M, Faust AM, Bravo DD, Santos CN, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho MY, Donohoue PD, Luo L, Lamberson B, Tamrakar P, Kim EJ, Villari JL, Gill A, Tripathi SA, Karamchedu P, Paredes CJ, Rajgarhia V, Kotlar HK, Bailey RB, Miller DJ, Ohler NL, Swimmer C, Yoshikuni Y (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505:239–243PubMed CrossRef
    Esaka K, Aburaya S, Morisaka H, Kuroda K, Ueda M (2015) Exoproteomic analysis of Clostridium cellulovorans in natural soft-biomass degradation. AMB Express 5:2PubMed PubMedCentral CrossRef
    Garron ML, Cygler M (2010) Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 20:1547–1573PubMed CrossRef
    Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146PubMed CrossRef
    Hutcheson SW, Zhang H, Suvorov M (2011) Carbohydrase systems of Saccharophagus degradans degrading marine complex polysaccharides. Mar Drugs 9:645–665PubMed PubMedCentral CrossRef
    Izu H, Adachi O, Yamada M (1997) Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli. J Mol Biol 267:778–793PubMed CrossRef
    Kabisch A, Otto A, Konig S, Becher D, Albrecht D, Schuler M, Teeling H, Amann RI, Schweder T (2014) Functional characterization of polysaccharide utilization loci in the marine bacteroidetes ‘Gramella forsetii’ KT0803. ISME J 8:1492–1502PubMed PubMedCentral CrossRef
    Kavanagh KL, Jornvall H, Persson B, Oppermann U (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906PubMed PubMedCentral CrossRef
    Kim HT, Ko H-J, Kim N, Kim D, Lee D (2012a) Characterization of a recombinant endo-type alginate lyase (Alg7D) from Saccharophagus degradans. Biotechnol Lett 34:1087–1092PubMed CrossRef
    Kim HT, Chung JH, Wang D, Lee J, Woo HC, Choi IG, Kim KH (2012b) Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40. Appl Microbiol Biotechnol 93:2233–2239PubMed CrossRef
    Koebnik R (2005) TonB-dependent trans-envelope signalling: the exception or the rule? Trends Microbiol 13:343–347PubMed CrossRef
    Matsui K, Bae J, Esaka K, Morisaka H, Kuroda K, Ueda M (2013) Exoproteome profiles of Clostridium cellulovorans grown on various carbon sources. Appl Environ Microbiol 79:6576–6584PubMed PubMedCentral CrossRef
    Morisaka H, Matsui K, Tatsukami Y, Kuroda K, Miyake H, Tamaru Y, Ueda M (2012) Profile of native cellulosomal proteins of Clostridium cellulovorans adapted to various carbon sources. AMB Express 2:37PubMed PubMedCentral CrossRef
    Ross AB, Jones JM, Kubacki ML, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol 99:6494–6504PubMed CrossRef
    Sato T, Imanaka H, Rashid N, Fukui T, Atomi H, Imanaka T (2004) Genetic evidence identifying the true gluconeogenic fructose-1,6-bisphosphatase in Thermococcus kodakaraensis and other hyperthermophiles. J Bacteriol 186:5799–5807PubMed PubMedCentral CrossRef
    Schurig H, Beaucamp N, Ostendorp R, Jaenicke R, Adler E, Knowles JR (1995) Phosphoglycerate kinase and triosephosphate isomerase from the hyperthermophilic bacterium Thermotoga maritima form a covalent bifunctional enzyme complex. EMBO J 14:442–451PubMed PubMedCentral
    Takagi T, Yokoi T, Shibata T, Morisaka H, Kuroda K, Ueda M (2015) Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate. Appl Microbiol Biotechnol. doi:10.​1007/​s00253-015-7035-x
    Takase R, Ochiai A, Mikami B, Hashimoto W, Murata K (2010) Molecular identification of unsaturated uronate reductase prerequisite for alginate metabolism in Sphingomonas sp. A1. Biochim Biophys Acta 1804:1925–1936PubMed CrossRef
    Tang K, Jiao N, Liu K, Zhang Y, Li S (2012) Distribution and functions of TonB-dependent transporters in marine bacteria and environments: implications for dissolved organic matter utilization. PLoS One 7:e41204PubMed PubMedCentral CrossRef
    Taylor AL, Trotter CD (1967) Revised linkage map of Escherichia coli. Bacteriol Rev 31:332–353PubMed PubMedCentral
    van Staalduinen LM, Jia Z (2014) Post-translational hydroxylation by 2OG/Fe(II)-dependent oxygenases as a novel regulatory mechanism in bacteria. Front Microbiol 5:798PubMed PubMedCentral
    Wang da M, Kim HT, Yun EJ, Kim do H, Park YC, Woo HC, Kim KH (2014) Optimal production of 4-deoxy-l -erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases. Bioprocess Biosyst Eng 37:2105–2111PubMed CrossRef
    Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CN, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313PubMed CrossRef
    Weiner RM, Taylor LE, Henrissat B, Hauser L, Land M, Coutinho PM, Rancurel C, Saunders EH, Longmire AG, Zhang HT, Bayer EA, Gilbert HJ, Larimer F, Zhulin IB, Ekborg NA, Lamed R, Richardson PM, Borovok I, Hutcheson S (2008) Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40T. PLoS Genet 4(5):e1000087PubMed PubMedCentral CrossRef
    Wong TY, Preston LA, Schiller NL (2000) ALGINATE LYASE: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 54:289–340PubMed CrossRef
  • 作者单位:Toshiyuki Takagi (1) (2) (3)
    Hironobu Morisaka (1) (2)
    Shunsuke Aburaya (1) (2)
    Yohei Tatsukami (1) (2) (3)
    Kouichi Kuroda (1) (2)
    Mitsuyoshi Ueda (1) (2)

    1. Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
    2. JST, CREST, Kawaguchi, Saitama, 332-0012, Japan
    3. Japan Society for the Promotion of Science, Sakyo, Kyoto, 606-8502, Japan
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Oceanography
  • 出版者:Springer New York
  • ISSN:1436-2236
文摘
Quantitative proteomic analysis was conducted to assess the assimilation processes of Saccharophagus degradans cultured with glucose, pectin, and alginate as carbon sources. A liquid chromatography-tandem mass spectrometry approach was used, employing our unique, long monolithic silica capillary column. In an attempt to select candidate proteins that correlated to alginate assimilation, the production of 23 alginate-specific proteins was identified by statistical analyses of the quantitative proteomic data. Based on the analysis, we propose that S. degradans has an alginate-specific gene cluster for efficient alginate utilization. The alginate-specific proteins of S. degradans were comprised of alginate lyases, enzymes related to carbohydrate metabolism, membrane transporters, and transcription factors. Among them, the short-chain dehydrogenase/reductase Sde_3281 annotated in the alginate-specific cluster showed 4-deoxy-l-erythro-5-hexoseulose uronic acid reductase (DehR) activity. Furthermore, we found two different genes (Sde_3280 and Sde_0939) encoding 2-keto-3-deoxy-d-gluconic acid (KDG) kinases (KdgK) that metabolize the KDG derived from alginate and pectin in S. degradans. S. degradans used Sde_3280 to phosphorylate the KDG derived from alginate and Sde_0939 to phosphorylate the KDG derived from pectin. The distinct selection of KdgKs provides an important clue toward the elucidation of how S. degradans recognizes and processes polysaccharides. Keywords Saccharophagus degradans Marine bacterium Quantitative proteomic analysis Alginate 4-Deoxy-l-erythro-5-hexoseulose uronic acid reductase

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700