HmuS and HmuQ of Ensifer/Sinorhizobium meliloti degrade heme in vitro and participate in heme metabolism in vivo
详细信息    查看全文
  • 作者:Vanesa Amarelle ; Federico Rosconi ; Juan Manuel Lázaro-Martínez…
  • 关键词:Rhizobia ; Heme ; oxygenase ; Iron metabolism ; Heme ; E. meliloti ; Heme ; degradation
  • 刊名:Biometals
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:29
  • 期:2
  • 页码:333-347
  • 全文大小:1,113 KB
  • 参考文献:Allaway D, Schofield NA, Leonard ME, Gilardoni L, Finan TM, Poole PS (2001) Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes. Environ Microbiol 3:397–406CrossRef PubMed
    Amarelle V, O’Brian MR, Fabiano E (2008) ShmR is essential for utilization of heme as a nutritional iron source in Sinorhizobium meliloti. Appl Environ Microbiol 74:6473–6475CrossRef PubMed PubMedCentral
    Amarelle V, Koziol U, Rosconi F, Noya F, O’Brian MR, Fabiano E (2010) A new small regulatory protein, HmuP, modulates haemin acquisition in Sinorhizobium meliloti. Microbiology 156:1873–1882CrossRef PubMed PubMedCentral
    Battistoni F, Platero R, Duran R, Cervenansky C, Battistoni J, Arias A, Fabiano E (2002) Identification of an iron-regulated, hemin-binding outer membrane protein in Sinorhizobium meliloti. Appl Environ Microbiol 68:5877–5881CrossRef PubMed PubMedCentral
    Becker A, Schmidt M, Jager W, Puhler A (1995) New gentamicin-resistance and lacZ promoter-probe cassettes suitable for insertion mutagenesis and generation of transcriptional fusions. Gene 162:37–39CrossRef PubMed
    Benson DR, Rivera M (2013) Heme uptake and metabolism in bacteria Met ions. Life Sci 12:279–332
    Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198PubMed
    Bonnett R, McDonagh AF (1973) The meso-reactivity of porphyrins and related compounds. VI. Oxidative cleavage of the haem system. The four isomeric biliverdins of the IX series. J Chem Soc Perkin 1 9:881–888CrossRef PubMed
    Chao TC, Buhrmester J, Hansmeier N, Puhler A, Weidner S (2005) Role of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation. Appl Environ Microbiol 71:5969–5982CrossRef PubMed PubMedCentral
    Cuiv PO, Keogh D, Clarke P, O’Connell M (2008) The hmuUV genes of Sinorhizobium meliloti 2011 encode the permease and ATPase components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores, ferrichrome and ferrioxamine B. Mol Microbiol 70:1261–1273CrossRef PubMed
    Diaz-Mireles E, Wexler M, Sawers G, Bellini D, Todd JD, Johnston AW (2004) The fur-like protein mur of Rhizobium leguminosarum is a Mn2+-responsive transcriptional regulator. Microbiology 150:1447–1456CrossRef PubMed
    Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A 77:7347–7351CrossRef PubMed PubMedCentral
    Dominguez-Ferreras A, Perez-Arnedo R, Becker A, Olivares J, Soto MJ, Sanjuan J (2006) Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. J Bacteriol 188:7617–7625CrossRef PubMed PubMedCentral
    Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652CrossRef PubMed PubMedCentral
    Finan TM, Hartweig E, LeMieux K, Bergman K, Walker GC, Signer ER (1984) General transduction in Rhizobium meliloti. J Bacteriol 159:120–124PubMed PubMedCentral
    Frankenberg-Dinkel N (2004) Bacterial heme oxygenases. Antioxid Redox Signal 6:825–834CrossRef PubMed
    Friedman YE, O’Brian MR (2004) The ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum is an iron-responsive transcriptional repressor in vitro. J Biol Chem 279:32100–32105CrossRef PubMed
    Gisk B, Wiethaus J, Aras M, Frankenberg-Dinkel N (2012) Variable composition of heme oxygenases with different regiospecificities in Pseudomonas species. Arch Microbiol 194:597–606CrossRef PubMed
    Guo Y et al (2008) Functional identification of HugZ, a heme oxygenase from Helicobacter pylori. BMC Microbiol 8:226CrossRef PubMed PubMedCentral
    Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580CrossRef PubMed
    Hirotsu S et al (2004) The crystal structures of the ferric and ferrous forms of the heme complex of HmuO, a heme oxygenase of Corynebacterium diphtheriae. J Biol Chem 279:11937–11947CrossRef PubMed
    Hu Y et al (2011) Crystal structure of HugZ, a novel heme oxygenase from Helicobacter pylori. J Biol Chem 286:1537–1544CrossRef PubMed PubMedCentral
    Lee MJ, Schep D, McLaughlin B, Kaufmann M, Jia Z (2014) Structural analysis and identification of PhuS as a heme-degrading enzyme from Pseudomonas aeruginosa. J Mol Biol 426:1936–1946CrossRef PubMed
    Letoffe S, Heuck G, Delepelaire P, Lange N, Wandersman C (2009) Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact. Proc Natl Acad Sci U S A 106:11719–11724CrossRef PubMed PubMedCentral
    Matsui T, Nambu S, Ono Y, Goulding CW, Tsumoto K, Ikeda-Saito M (2013) Heme degradation by Staphylococcus aureus IsdG and IsdI liberates formaldehyde rather than carbon monoxide. Biochemistry 52:3025–3027CrossRef PubMed PubMedCentral
    Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122PubMed PubMedCentral
    Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor
    Montellano PR (2000) The mechanism of heme oxygenase. Curr Opin Chem Biol 4:221–227CrossRef PubMed
    Nambu S, Matsui T, Goulding CW, Takahashi S, Ikeda-Saito M (2013) A new way to degrade heme: the Mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO. J Biol Chem 288:10101–10109CrossRef PubMed PubMedCentral
    Nienaber A, Hennecke H, Fischer HM (2001) Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum. Mol Microbiol 41:787–800CrossRef PubMed
    Noya F, Arias A, Fabiano E (1997) Heme compounds as iron sources for nonpathogenic Rhizobium bacteria. J Bacteriol 179:3076–3078PubMed PubMedCentral
    O’Brian MR, Fabiano E (2010) Mechanisms and regulation of iron homeostasis in the rhizobia. In: Cornelis P, Andrews SC (eds) Iron uptake and homeostasis in microorganisms. Caister Academic Press, Caister
    Ojeda JF, Martinson DA, Menscher EA, Roop RM 2nd (2012) The bhuQ gene encodes a heme oxygenase that contributes to the ability of Brucella abortus 2308 to use heme as an iron source and is regulated by Irr. J Bacteriol 194:4052–4058CrossRef PubMed PubMedCentral
    O’Neill MJ, Wilks A (2013) The P. aeruginosa heme binding protein PhuS is a heme oxygenase titratable regulator of heme uptake. ACS Chem Biol 8:1794–1802CrossRef PubMed PubMedCentral
    Park S, Kim D, Jang I, Oh HB, Choe J (2014) Structural and biochemical study of Bacillus subtilis HmoB in complex with heme. Biochem Biophys Res Commun 446:286–291CrossRef PubMed
    Persmark M, Pittman P, Buyer JS, Schwyn B, Gill PR, Neilands JB (1993) Isolation and structure of rhizobactin 1021, a siderophore from the alfalfa symbiont Rhizobium meliloti. J Am Chem Soc 115:3950–3956CrossRef
    Platero RA, Jaureguy M, Battistoni FJ, Fabiano ER (2003) Mutations in sitB and sitD genes affect manganese-growth requirements in Sinorhizobium meliloti. FEMS Microbiol Lett 218:65–70CrossRef PubMed
    Platero R, Peixoto L, O’Brian MR, Fabiano E (2004) Fur is involved in manganese-dependent regulation of mntA (sitA) expression in Sinorhizobium meliloti. Appl Environ Microbiol 70:4349–4355CrossRef PubMed PubMedCentral
    Puri S, O’Brian MR (2006) The hmuQ and hmuD genes from Bradyrhizobium japonicum encode heme-degrading enzymes. J Bacteriol 188:6476–6482CrossRef PubMed PubMedCentral
    Ratliff M, Zhu W, Deshmukh R, Wilks A, Stojiljkovic I (2001) Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J Bacteriol 183:6394–6403CrossRef PubMed PubMedCentral
    Reniere ML et al (2010) The IsdG-family of haem oxygenases degrades haem to a novel chromophore. Mol Microbiol 75:1529–1538CrossRef PubMed PubMedCentral
    Rodionov DA, Gelfand MS, Todd JD, Curson AR, Johnston AW (2006) Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput Biol 2:e163CrossRef PubMed PubMedCentral
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor
    Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73CrossRef PubMed
    Schmitt MP (1997) Utilization of host iron sources by Corynebacterium diphtheriae: identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J Bacteriol 179:838–845PubMed PubMedCentral
    Schuller DJ, Wilks A, de Ortiz Montellano PR, Poulos TL (1999) Crystal structure of human heme oxygenase-1. Nat Struct Biol 6:860–867CrossRef PubMed
    Schuller DJ, Zhu W, Stojiljkovic I, Wilks A, Poulos TL (2001) Crystal structure of heme oxygenase from the gram-negative pathogen Neisseria meningitidis and a comparison with mammalian heme oxygenase-1. Biochemistry 40:11552–11558CrossRef PubMed
    Sigman JA, Wang X, Lu Y (2001) Coupled oxidation of heme by myoglobin is mediated by exogenous peroxide. J Am Chem Soc 123:6945–6946CrossRef PubMed
    Skaar EP, Gaspar AH, Schneewind O (2004) IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus. J Biol Chem 279:436–443CrossRef PubMed
    Skaar EP, Gaspar AH, Schneewind O (2006) Bacillus anthracis IsdG, a heme-degrading monooxygenase. J Bacteriol 188:1071–1080CrossRef PubMed PubMedCentral
    Stojiljkovic I, Hantke K (1994) Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in Yersinia enterocolitica. Mol Microbiol 13:719–732CrossRef PubMed
    Suits MD, Pal GP, Nakatsu K, Matte A, Cygler M, Jia Z (2005) Identification of an Escherichia coli O157:H7 heme oxygenase with tandem functional repeats. Proc Natl Acad Sci U S A 102:16955–16960CrossRef PubMed PubMedCentral
    Thibodeau SA, Fang R, Joung JK (2004) High-throughput beta-galactosidase assay for bacterial cell-based reporter systems. Biotechniques 36:410–415PubMed
    Turlin E, Heuck G, Simoes Brandao MI, Szili N, Mellin JR, Lange N, Wandersman C (2014) Protoporphyrin (PPIX) efflux by the MacAB-TolC pump in Escherichia coli. Microbiol Open 3:849–859CrossRef
    Uchida T, Sekine Y, Matsui T, Ikeda-Saito M, Ishimori K (2012) A heme degradation enzyme, HutZ, from Vibrio cholerae. Chem Commun (Camb) 48:6741–6743CrossRef
    Unno M, Matsui T, Ikeda-Saito M (2007) Structure and catalytic mechanism of heme oxygenase. Nat Prod Rep 24:553–570CrossRef PubMed
    Viguier C, Cuiv PO, Clarke P, O’Connell M (2011) RirA is the iron response regulator of the rhizobactin 1021 biosynthesis and transport genes in Sinorhizobium meliloti. FEMS Microbiol Lett 246:235–242CrossRef
    Wang J et al (2004) Human heme oxygenase oxidation of 5- and 15-phenylhemes. J Biol Chem 279:42593–42604CrossRef PubMed
    Wegele R, Tasler R, Zeng Y, Rivera M, Frankenberg-Dinkel N (2004) The heme oxygenase(s)-phytochrome system of Pseudomonas aeruginosa. J Biol Chem 279:45791–45802CrossRef PubMed
    Wexler M, Yeoman KH, Stevens JB, de Luca NG, Sawers G, Johnston AW (2001) The Rhizobium leguminosarum tonB gene is required for the uptake of siderophore and haem as sources of iron. Mol Microbiol 41:801–816CrossRef PubMed
    Wilks A, Ikeda-Saito M (2014) Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin. Acc Chem Res 47:2291–2298CrossRef PubMed PubMedCentral
    Wilks A, Schmitt MP (1998) Expression and characterization of a heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. J Biol Chem 273:837–841CrossRef PubMed
    Wu R, Skaar EP, Zhang R, Joachimiak G, Gornicki P, Schneewind O, Joachimiak A (2005) Staphylococcus aureus IsdG and IsdI, heme-degrading enzymes with structural similarity to monooxygenases. J Biol Chem 280:2840–2846CrossRef PubMed PubMedCentral
    Zhu W, Wilks A, Stojiljkovic I (2000) Degradation of heme in gram-negative bacteria: the product of the hemO gene of Neisseriae is a heme oxygenase. J Bacteriol 182:6783–6790CrossRef PubMed PubMedCentral
  • 作者单位:Vanesa Amarelle (1)
    Federico Rosconi (1)
    Juan Manuel Lázaro-Martínez (2)
    Graciela Buldain (2)
    Francisco Noya (1)
    Mark R. O’Brian (3)
    Elena Fabiano (1)

    1. Biochemical and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
    2. CONICET and Faculty of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina
    3. State University of New York at Buffalo, New York, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Physical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8773
文摘
Ensifer meliloti is a nitrogen-fixing symbiont of the alfalfa legume able to use heme as an iron source. The transport mechanism involved in heme acquisition in E. meliloti has been identified and characterized, but the fate of heme once inside the cell is not known. In silico analysis of E. meliloti 1021 genome revealed no canonical heme oxygenases although two genes encoding putative heme degrading enzymes, smc01518 and hmuS, were identified. SMc01518 is similar to HmuQ of Bradyrhizobium japonicum, which is weakly homologous to the Staphylococcus aureus IsdG heme-degrading monooxygenase, whereas HmuS is homolog to Pseudomonas aeruginosa PhuS, a protein reported as a heme chaperone and as a heme degrading enzyme. Recombinant HmuQ and HmuS were able to bind hemin with a 1:1 stoichiometry and displayed a Kd value of 5 and 4 µM, respectively. HmuS degrades heme in vitro to the biliverdin isomers IX-β and IX-δ in an equimolar ratio. The HmuQ recombinant protein degrades heme to biliverdin IX-δ only. Additionally, in this work we demonstrate that humS and hmuQ gene expression is regulated by iron and heme in a RirA dependent manner and that both proteins are involved in heme metabolism in E. meliloti in vivo.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700