One-Component Styrene Monooxygenases: An Evolutionary View on a Rare Class of Flavoproteins
详细信息    查看全文
  • 作者:Dirk Tischler (1) dirk-tischler@email.de
    Janosch A. D. Gr?ning (1)
    Stefan R. Kaschabek (1)
    Michael Schl?mann (1)
  • 关键词:One ; component styrene monooxygenase – Rhodococcus opacus – Self ; sufficient fusion protein – Covalent evolution – Enantioselective epoxidation – Flavin monooxygenase
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:167
  • 期:5
  • 页码:931-944
  • 全文大小:589.3 KB
  • 参考文献:1. Tischler, D., & Kaschabek, S. R. (2012). In S. N. Singh (Ed.), Microbial degradation of xenobiotics. Environmental Science and Engineering (pp. 67–99). Heidelberg: Springer.
    2. Montersino, S., Tischler, D., Gassner, G. T., & van Berkel, W. J. H. (2011). Advanced Synthesis and Catalysis, 353, 2301–2319.
    3. van Berkel, W. J. H., Kamerbeek, N. M., & Fraaije, M. W. (2006). Journal of Biotechnology, 124, 670–689.
    4. Kantz, A., Chin, F., Nallamothu, N., Nguyen, T., & Gassner, G. T. (2005). Archives of Biochemistry and Biophysics, 442, 102–116.
    5. Otto, K., Hofstetter, K., Roethlisberger, M., Witholt, B., & Schmid, A. (2004). Journal of Bacteriology, 186, 5292–5302.
    6. Hollmann, F., Lin, P.-C., Witholt, B., & Schmid, A. (2003). Journal of the American Chemical Society, 125, 8209–8217.
    7. van Hellemond, E. W., Janssen, D. B., & Fraaije, M. W. (2007). Applied and Environmental Microbiology, 73, 5832–5839.
    8. Nikodinovic-Runic, J., Flanagan, M., Hume, A. R., Cagney, G., & O'Connor, K. E. (2009). Microbiology, 155, 3348–3361.
    9. Tischler, D., Eulberg, D., Lakner, S., Kaschabek, S. R., van Berkel, W. J. H., & Schl?mann, M. (2009). Journal of Bacteriology, 191, 4996–5009.
    10. Tischler, D., Kermer, R., Gr?ning, J. A. D., Kaschabek, S. R., van Berkel, W. J. H., & Schl?mann, M. (2010). Journal of Bacteriology, 192, 5220–5227.
    11. De Mot, R., & Parret, A. H. A. (2002). Trends in Microbiology, 10, 502–508.
    12. Liu, L., Schmid, R. D., & Urlacher, V. B. (2006). Applied Microbiology and Biotechnology, 72, 876–882.
    13. Munro, A. W., Girvan, H. M., & McLean, K. J. (2007). Biochimica et Biophysica Acta, 1770, 345–359.
    14. Torres Pazmi?o, D. E., Winkler, M., Glieder, A., & Fraaije, M. W. (2010). Journal of Biotechnology, 146, 9–24.
    15. Kim, B. S., Kim, S. Y., Park, J., Park, W., Hwang, K. Y., Yoon, Y. J., et al. (2007). Journal of Applied Microbiology, 102, 1392–1400.
    16. Roberts, G. A., Grogan, G., Greter, A., Flitsch, S. L., & Turner, N. J. (2002). Journal of Bacteriology, 184, 3898–3908.
    17. Dorn, E., Hellwig, M., Reineke, W., & Knackmuss, H.-J. (1974). Archives of Microbiology, 99, 61–70.
    18. Mitani, Y., Meng, X. Y., Kamagata, Y., & Tamura, T. (2005). Journal of Bacteriology, 187, 2582–2591.
    19. Quan, S., & Dabbs, E. R. (1993). Plasmid, 29, 74–79.
    20. Lenke, H., Pieper, D. H., Bruhn, C., & Knackmuss, H.-J. (1992). Applied and Environmental Microbiology, 58, 2928–2932.
    21. Gorlatov, S. N., Maltseva, O. V., Shevchenko, V. I., & Golovleva, L. A. (1989). Microbiology (Mikrobiologiya), 58, 647–651.
    22. Dabrock, B., Ke?ler, M., Averhoff, B., & Gottschalk, G. (1994). Applied and Environmental Microbiology, 60, 853–860.
    23. Sensfuss, C., Reh, M., & Schlegel, H. G. (1986). Journal of General Microbiology, 132, 997–1007.
    24. Seto, M., Kimbara, K., Shimura, M., Hatta, T., Fukuda, M., & Yano, K. (1995). Applied and Environmental Microbiology, 61, 3353–3358.
    25. Mongodin, E. F., Shapir, N., Daugherty, S. C., DeBoy, R. T., Emerson, J. B., Shvartzbeyn, A., et al. (2006). PLoS Genetics, 2, e214.
    26. Sambrook, J., Fritsch, E., & Maniatis, T. (2001). Molecular cloning: a laboratory manual (3rd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
    27. Gr?ning, J. A. D., Tischler, D., Kaschabek, S. R., & Schl?mann, M. (2010). Journal of Basic Microbiology, 50, 499–502.
    28. Wei, M., Deng, J., Feng, K., Yu, B., & Chen, Y. (2010). Analytical Chemistry, 82, 6303–6307.
    29. Moiseeva, O. V., Solyanikova, I. P., Kaschabek, S. R., Gr?ning, J., Thiel, M., Golovleva, L. A., et al. (2002). Journal of Bacteriology, 184, 5282–5292.
    30. Altschul, S. F., Madden, T. L., Sch?ffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Nucleic Acids Research, 25, 3389–3402.
    31. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Journal of Molecular Biology, 215, 403–410.
    32. Staden, R. (1996). Molecular Biotechnology, 5, 233–241.
    33. Higgins, D. G., & Sharp, P. M. (1988). Gene, 73, 237–244.
    34. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). Nucleic Acids Research, 25, 4876–4882.
    35. Felsenstein, J. (2005). PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Seattle: Department of Genome Sciences, University of Washington.
    36. Ishikawa, J., Yamashita, A., Mikami, Y., Hoshino, Y., Kurita, H., Hotta, K., et al. (2004). Proceedings of the National Academy of Sciences of the United States of America, 101, 14925–14930.
    37. Tan, G., Gao, Y., Shi, M., Zhang, X., He, S., Chen, Z., et al. (2005). Nucleic Acids Research, 33, e122.
    38. Velasco, A., Alonso, S., Garcia, J. L., Perera, J., & Diaz, E. (1998). Journal of Bacteriology, 180, 1063–1071.
    39. K?nig, C., Eulberg, D., Gr?ning, J., Lakner, S., Seibert, V., Kaschabek, S. R., et al. (2004). Microbiology, 150, 3075–3087.
    40. Bestetti, G., Galli, E., Ruzzi, M., Baldacci, G., Zennaro, E., & Frontali, L. (1984). Plasmid, 12, 181–188.
    41. Toda, H., & Itoh, N. (2012). Journal of Bioscience and Bioengineering, 113, 12–19.
    42. Bundy, B. M., Campbell, A. L., & Neidle, E. L. (1998). Journal of Bacteriology, 180, 4466–4474.
    43. Eulberg, D., Kourbatova, E. M., Golovleva, L. A., & Schl?mann, M. (1998). Journal of Bacteriology, 180, 1082–1094.
    44. Solyanikova, I. P., Maltseva, O. V., Volmer, M. D., Golovleva, L. A., & Schl?mann, M. (1995). Journal of Bacteriology, 177, 2821–2826.
  • 作者单位:1. Interdisciplinary Ecological Center, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
  • ISSN:1559-0291
文摘
Styrene monooxygenases (SMOs) are catalysts for the enantioselective epoxidation of terminal alkenes. Most representatives comprise a reductase and a monooxygenase which are encoded by separate genes (styA, styB). Only six presumed self-sufficient one-component SMOs (styA2B) have previously been submitted to databases, and one has so far been characterized. StyA2B can be supported by another epoxidase (StyA1) encoded by styA1, a gene in direct neighborhood of styA2B. The present report describes the identification of a further styA1/styA2B-like SMO, which was detected in Rhodococcus opacus MR11. Based on the initially available sequences of styA2B-type SMOs, primers directed at conserved sequences were designed and a 7,012-bp genomic fragment from strain MR11 was obtained after PCRs and subsequent genome walking. Six open reading frames (ORFs) were detected and compared to genomic fragments of strains comprising either two- or one-component SMOs. Among the proteins encoded by the ORFs, the monooxygenase StyA1/StyA2B showed the highest divergence on amino acid level when comparing proteins from different sources. That finding, a rare distribution of styA2B genes among bacteria, and the general observation of evolution from simple to complex systems indicate that one-component SMOs evolved from two-component ancestors. Analysis of gene products from styA/styB- and styA1/styA2B-like SMOs revealed that a fusion of styA/styB to styA2B might have happened at least twice among microorganisms. This points to a convergent evolution of one-component SMOs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700