Expression and characterization of styrene monooxygenases of Rhodococcus sp. ST-5 and ST-10 for synthesizing enantiopure (S)-epoxides
详细信息    查看全文
  • 作者:Hiroshi Toda (1)
    Ryouta Imae (1)
    Tomoko Komio (2)
    Nobuya Itoh (1) nbito@pu-toyama.ac.jp
  • 关键词:Rhodococcus sp. – ; Styrene monooxygenase ; Flavin oxidoreductase – ; Epoxidation – ; (S) ; epoxides – ; Biocatalysis
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:96
  • 期:2
  • 页码:407-418
  • 全文大小:2.5 MB
  • 参考文献:1. Beltrametti F, Marconi AM, Bestetti G, Colombo C, Galli E, Ruzzi M, Zennaro E (1997) Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 63:2232–2239
    2. Champreda V, Choi YJ, Zhou NY, Leak DJ (2006) Alternation of the stereo- and regioselectivity of alkene monooxygenase based on coupling protein interaction. Appl Microbiol Biotechnol 71:840–847
    3. Collman JP, Wang Z, Straumanis A, Quelquejeu M (1999) An efficient catalyst for asymmetric epoxidation of terminal olefins. J Am Chem Soc 121:460–461
    4. Eppink MHM, Schreuder HA, van Berkel WJH (1997) Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding. Protein Sci 6:2454–2458
    5. Eulberg D, Golovleva LA, Schl枚mann M (1997) Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP. J Bacteriol 179:370–381
    6. Farinas ET, Alcalde M, Arnold F (2004) Alkene epoxidation catalyzed by cytochrome P450 BM-3 139-3. Tetrahedron 60:525–528
    7. Gennaro PD, Colmegna A, Galli E, Sello G, Pelizzoni F, Bestetti G (1999) A new biocatalyst for production of optically pure aryl epoxides by styrene monooxygenase from Pseudomonas fluorescens ST. Appl Environ Microbiol 65:2794–2797
    8. Groves JT, Myers RS (1983) Catalytic asymmetric epoxidations with chiral iron porphyrins. J Am Chem Soc 105:5791–5796
    9. Habets-Cr眉tzen AQH, Brink LES, van Ginkel CG, de Bont JAM, Tramper J (1984) Production of epoxides from gaseous alkenes by resting-cell suspensions and immobilized cells of alkene-utilizing bacteria. Appl Microbiol Biotechnol 20:245–250
    10. Hartmans S, Weber FJ, Somhorst DPM, de Bont JAM (1991) Alkene monooxygenase from Mycobacterium: a multicomponent enzyme. J Gen Microbiol 137:2555–2560
    11. Hofstetter K, Lutz J, Lang I, Witholt B, Schmid A (2004) Coupling of biocatalytic asymmetric epoxidation with NADH regeneration in organic-aqueous emulsions. Angew Chem Int Ed 43:2163–2166
    12. Hollmann F, Lin PC, Witholt B, Schmid A (2003) Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a FAD-dependent monooxygenase for catalysis. J Am Chem Soc 125:8209–8217
    13. Iida H, Maruyama T, Kobayashi H, Kakidani H (2005) Selective oxidation of organic compounds by utilizing toluene monooxygenases. TOSOH Res Technol Rev 49:3–13
    14. Itoh N, Yoshida K, Okada K (1996) Isolation and identification of styrene-degrading Corynebacterium strains, and their styrene metabolism. Biosci Biotech Biochem 60:1826–1830
    15. Kantz A, Chin F, Nallamothu N, Nguyen T, Gassner GT (2005) Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase. Arch Biochem Biophys 442:102–116
    16. Lee JK, Zhao H (2007) Identification and characterization of the flavin: NADH reductase (PrnF) involved in a novel two-component arylamine oxygenase. J Bacteriol 189:8556–8563
    17. Marconi AM, Beltrametti F, Bestetti G, Solinas F, Ruzzi M, Galli E, Zennaro E (1996) Cloning and characterization of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 62:121–127
    18. McClay K, Fox BG, Steffan RJ (2000) Toluene monooxygenase-catalyzed epoxidation of alkenes. Appl Environ Microbiol 66:1877–1882
    19. McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A 103:15582–15587
    20. O'Connor KE, Dobson AD, Hartmans S (1997) Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl Environ Microbiol 63:4287–4291
    21. Otto K, Hofstetter K, R枚thlisberger M, Witholt B, Schmid A (2004) Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J Bacteriol 186:5292–5302
    22. Panke S, Witholt B, Schmid A, Wubbolts MG (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64:2032–2043
    23. Panke S, de Lorenzo V, Kaiser A, Witholt B, Wubbolts MG (1999) Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications. Appl Environ Microbiol 65:5619–5623
    24. Parry RJ, Li W (1997) An NADPH: FAD oxidoreductase from the valanimycin producer, Streptomyces viridifaciens. J Biol Chem 272:23303–23311
    25. Schmid A, Hofstetter K, Feiten HJ, Hollmann F, Witholt B (2001) Integrated biocatalytic synthesis on gram scale: the highly enantioselective preparation of chiral oxiranes with styrene monooxygenase. Adv Synth Catal 343:732–737
    26. Shi Y (2004) Organocatalytic asymmetric epoxidation of olefins by chiral ketones. Acc Chem Res 37:488–496
    27. Small FJ, Ensign SA (1997) Alkene monooxygenase from Xanthobacter strain Py2. J Biol Chem 272:24913–24920
    28. Smith SW (2009) Chiral toxicology: it’s the same thing … only different. Toxicol Sci 110:4–30
    29. Takeo M, Yasukawa T, Abe Y, Niihara S, Maeda Y, Negoro S (2003) Cloning and characterization of a 4-nitrophenol hydroxylase gene cluster from Rhodococcus sp. PN1. J Biosci Bioeng 95:139–145
    30. Takeo M, Murakami M, Niihara S, Yamamoto K, Nishimura M, Kato D, Negoro S (2008) Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. strain PN1: characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression. J Bacteriol 190:7367–7374
    31. Tischler D, Eulberg D, Lakner S, Kaschabek SR, van Berkel WJH, Schl枚mann M (2009) Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP. J Bacteriol 191:4996–5009
    32. Toda H, Itoh N (2012) Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10. J Biosci Bioeng 113:12–19
    33. Vallon O (2000) New sequence motifs in flavoproteins: evidence for common ancestry and tools to predict structure. Proteins 38:95–114
    34. Van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689
    35. Van Hellemond EW, Janssen DB, Fraaije MW (2007) Discovery of a novel styrene monooxygenase originating from the metagenome. Appl Environ Microbiol 73:5832–5839
    36. Velasco A, Alonso S, Garc铆a JL, Perera J, D铆az E (1998) Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J Bacteriol 180:1063–1071
    37. Yeo YJ, Shin S, Lee SG, Park S, Jeong YJ (2009) Production, purification, and characterization of soluble NADH-flavin oxidoreductase (StyB) from Pseudomonas putida SN1. J Microbiol Biotechnol 19:362–367
    38. Zhang W, Jacobsen EN (1991) Asymmetric olefin epoxidation with sodium hypochlorite catalyzed by easily prepared chiral Mn(III) salen complex. J Org Chem 56:2296–2298
  • 作者单位:1. Department of Biotechnology, Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398 Japan2. Namerikawa High School, 45 Kashimacho, Namerikawa, Toyama, 936-8507 Japan
  • ISSN:1432-0614
文摘
Styrene monooxygenase (StyA, SMOA)- and flavin oxidoreductase (StyB, SMOB)-coding genes of styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10 were successfully expressed in Escherichia coli. Determined amino acid sequences of StyAs and StyBs of ST-5 and ST-10 showed more similarity with those of Pseudomonas than with self-sufficient styrene monooxygenase (StyA2B) of Rhodococcus. Recombinant enzymes were purified from E. coli cells as functional proteins, and their properties were characterized in detail. StyBs (flavin oxidoreductase) of strains ST-5 and ST-10 have similar enzymatic properties to those of Pseudomonas, but StyB of strain ST-10 exhibited higher temperature stability than that of strain ST-5. StyAs of strains ST-5 and ST-10 catalyzed the epoxidation of vinyl side-chain of styrene and its derivatives and produced (S)-epoxides from styrene derivatives and showed high stereoselectivity. Both StyAs showed higher specific activity on halogenated styrene derivatives than on styrene itself. Additionally, the enzymes could catalyze the epoxidation of short-chain 1-alkenes to the corresponding (S)-epoxides. Aromatic compounds including styrene, 3-chlorostyrene, styrene oxide, and benzene exhibited marked inhibition of SMO reaction, although linear 1-alkene showed no inhibition of SMO activity at any concentration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700