Equilibrium scour depth at offshore monopile foundation in combined waves and current
详细信息    查看全文
  • 作者:WenGang Qi (1)
    FuPing Gao (1)
  • 关键词:monopile ; pore ; pressure ; scour depth ; combined waves and current ; Froude number
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:57
  • 期:5
  • 页码:1030-1039
  • 全文大小:
  • 参考文献:1. Chen J J. Development of offshore wind power in China. Renew Sust Energ Rev, 2011, 15: 5013鈥?020 CrossRef
    2. Hong L X, M枚ller B. Offshore wind energy potential in China: Under technical, spatial and economic constraints. Energy, 2011, 36: 4482鈥?491 CrossRef
    3. Ernst & Young. Cost of and financial support for offshore wind. In: Ernst & Young Report for the Department of Energy and Climate Change, DECC, London, 2009
    4. LeBlanc C. Design of offshore wind turbine support structures. Dissertation of Doctoral Degree. Denmark: TU of Denmark, 2004
    5. S酶rensen S P H, Ibsen L B, Frigaard P. Experimental evaluation of backfill in scour holes around offshore monopoles. In: Frontiers in Offshore Geotechnics II. Gourvenec S, White D, eds. London: Taylor & Francis Group, 2011. 617鈥?22
    6. Zhou Y R, Chen G P. Experimental study on local scour around a large circular cylinder under irregular waves. China Ocean Eng, 2004, 18: 245鈥?56
    7. H酶gedal M, Hald T. Scour assessment and design for scour for monopile foundations for offshore wind turbines. In: Procedings of Copenhagen Offshore Wind, Copenhagen, 2005
    8. Harris J, Whitehouse R J S, Benson T. The time evolution of scour around offshore structures. ICE-Maritime Eng, 2010, 163: 3鈥?7 CrossRef
    9. Whitehouse R J S, Harris J M, Sutherland J, et al. The nature of scour development and scour protection at offshore windfarm foundations. Mar Pollut Bull, 2011, 62: 73鈥?8 CrossRef
    10. Matutano C, Negro V, L贸pez-Guti茅rrez J S, et al. Scour prediction and scour protections in offshore wind farms. Renew Energ, 2013, 57: 358鈥?65 CrossRef
    11. Chen L, Lam W H. Methods for predicting seabed scour around marine current turbine. Renew Sust Energ Rev, 2014, 29: 683鈥?92 CrossRef
    12. Det N V. DNV offshore standard DNV-OS-J101, design of offshore wind turbine. Technical Standard, 2013. 134鈥?35
    13. Sumer B M, Freds酶e J, Christiansen N. Scour around a vertical pile in waves. J Waterw Port C, 1992, 118: 15鈥?1 CrossRef
    14. Negro V, L贸pez-Guti茅rrez J S, Esteban M D, et al. Uncertainties in the design of support structures and foundations for offshore wind turbines. Renew Energ, 2014, 63: 125鈥?32 CrossRef
    15. Zhu Y H, Lu J Y, Liao H Z, et al. Research on cohesive sediment erosion by flow: An overview. Sci China Ser E: Tech Sci, 2008, 51: 2001鈥?012 CrossRef
    16. Melville B W, Sutherland A J. Design method for local scour at bridge piers. J Hydraul Eng, 1988, 114: 1210鈥?226 CrossRef
    17. Richardson E V, Davis S R. Evaluating Scour at Bridges, Hydraulic Engineering Circular No. 18: US Fed Hwy Admin. US Dept Transp, FHWA-NHI-01-001, 2001
    18. Johnson P A. Comparison of pier-scour equations using field data. J Hydraul Eng, 1995, 121: 626鈥?29 CrossRef
    19. Breusers H N C, Nicollet G, Shen H W. Local scour around cylindrical piers. J Hydraul Res, 1977, 15: 211鈥?52 CrossRef
    20. Froehlich D C. Analysis of onsite measurements of scour at piers. American Society of Civil Engineers National Conf on Hydraul Eng, Colorado Springs, CO, USA, 1988. 534鈥?39
    21. Kothyari U C, Garde R J, Ranga Raju K G. Temporal variation of scour around circular bridge piers. J Hydraul Eng, 1992, 118: 1091鈥?106 CrossRef
    22. Melville B W. Pier and abutment scour: integrated approach. J Hydraul Eng, 1997, 123: 125鈥?36 CrossRef
    23. Sheppard D M, Odeh M, Glasser T. Large scale clear-water local pier scour experiments. J Hydraul Eng, 2004, 130: 957鈥?63 CrossRef
    24. Gaudio R, Grimaldi C, Tafarojnoruz A, et al. Comparison of formulae for the prediction of scour depth at piers. Proc 1st IAHR European Division Congress. Edinburgh, UK: Heriot-Watt University, 2010
    25. Hoffmans G J C M, Verheij H J. Scour Manual. Rotterdam: A.A. Balkema, 1997
    26. Whitehouse R. Scour at Marine Structures: A Manual for Practical Applications. London: Thomas Telford, 1998 CrossRef
    27. Sumer B M, Freds酶e J. The Mechanics of Scour in the Marine Environment. Singapore: World Scientific, 2002 CrossRef
    28. Dey S, Helkj忙r A, Mutlu Sumer B, et al. Scour at vertical piles in sand-clay mixtures under waves. J Waterw Port C, 2011, 137: 324鈥?31 CrossRef
    29. Zanke U C E, Hsu T W, Roland A, et al. Equilibrium scour depths around piles in noncohesive sediments under currents and waves. Coast Eng, 2011, 58, 986鈥?91 CrossRef
    30. Sumer B M, Freds酶e J. Scour around pile in combined waves and current. J Hydraul Eng, 2001, 127: 403鈥?11 CrossRef
    31. Rudolph D, Bos K J, Luijendijk A P, et al. Scour around offshore structures-analysis of field measurements. Proc 2nd International Conf on Scour and Erosion, Singapore, 2004. 14鈥?7
    32. Sumer B M, Petersen T U, Locatelli L, et al. Backfilling of a scour hole around a pile in waves and current. J Waterw Port C, 2013, 139: 9鈥?3 CrossRef
    33. Qi W G, Gao F P. Physical modeling of local scour development around a large-diameter monopile in combined waves and current. Coast Eng, 2014, 83: 72鈥?1. CrossRef
    34. Cata帽o-Lopera Y A, Landry B J, Garc铆a M H. Scour and burial mechanics of conical frustums on a sandy bed under combined flow conditions. Ocean Eng, 2011, 38: 1256鈥?268 CrossRef
    35. Soulsby R. Dynamics of Marine Sands. London: Thomas Telford, 1997
    36. Ettema R, Melville B W, Barkdoll B. Scale effect in pier-scour experiments. J Hydraul Eng, 1998, 124: 639鈥?42 CrossRef
    37. Melville B W, Coleman S E. Bridge Scour. Colorado: Water Resources Publications, 2000
    38. Cheng N S, Chiew Y M. Incipient sediment motion with upward seepage. J Hydraul Res, 1999, 37: 665鈥?81 CrossRef
    39. Melville B W, Chiew Y M. Time scale for local scour at bridge piers. J Hydraul Eng, 1999, 125: 59鈥?5 CrossRef
    40. Sheppard D M, Odeh M, Glasser T. Large scale clear-water local pier scour experiments. J Hydraul Eng, 2004, 130: 957鈥?63 CrossRef
    41. Lee S, Sturm T. Effect of sediment size scaling on physical modeling of bridge pier scour. J Hydraul Eng, 2009, 135: 793鈥?02 CrossRef
    42. Li X J, Gao F P, Yang B, et al. Wave-induced pore-pressure responses and soil liquefaction around pile foundation. Int J Offshore Polar, 2011, 21: 233鈥?39
    43. Jeng D S, Seymour B, Gao F P, et al. Ocean waves propagating over a porous seabed: Residual and oscillatory mechanisms. Sci China Ser E: Tech Sci, 2007, 50: 81鈥?9 CrossRef
    44. Qi W G, Gao F P. Responses of sandy seabed under combined waves and current: Turbulent boundary layer and pore-water pressure. Proc of 8th International Conf on Physical Modelling in Geotechnic, Perth, Australia, 2014
    45. Baker C J. The laminar horseshoe vortex. J Fluid Mech, 1979, 95: 347鈥?67 CrossRef
    46. Baker C J. The turbulent horseshoe vortex. J Wind Eng Ind Aerod, 1980, 6: 9鈥?3 CrossRef
    47. Shen H W, Schneider V R, Karaki S. Local scour around bridge piers. J Hydraul Div, 1969, 95: 1919鈥?940
    48. Ettema R, Kirkil G, Muste M. Similitude of large-scale turbulence in experiments on local scour at cylinders. J Hydraul Eng, 2006, 132: 33鈥?0 CrossRef
    49. Olsen N R B, Kjellesvig H M. Three-dimensional numerical flow modelling for estimation of maximum local scour. J Hydraul Res, 1998, 36: 579鈥?90 CrossRef
    50. Debnath K, Chaudhuri S. Laboratory experiments on local scour around cylinder for clay and clay-sand mixed beds. Eng Geol, 2010, 111: 51鈥?1 CrossRef
    51. Umeda S, Yuhi M, Ishida H. Numerical study of three-dimensional flow fields around the base of a vertical cylinder in oscillatory plus mean flow. In: Proceedings of Coastal Structures 2003, Reston, 2003. 751鈥?61
  • 作者单位:WenGang Qi (1)
    FuPing Gao (1)

    1. Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
  • ISSN:1869-1900
文摘
Unlike the pier scour in bridge waterways, the local scour at offshore monopile foundations should take into account the effect of wave-current combination. Under the condition of wave-current coexistence, the water-soil interfacial scouring is usually coupled with the pore-pressure dynamics inside of the seabed. The aforementioned wave/current-pile-soil coupling process was physically modeled with a specially designed flow-structure-soil interaction flume. Experimental results indicate that superimposing a current onto the waves obviously changes the pore-pressure and the flow velocity at the bed around the pile. The concomitance of horseshoe vortex and local scour hole around a monopile proves that the horseshoe vortex is one of the main controlling mechanisms for scouring development under the combined waves and current. Based on similarity analyses, an average-velocity based Froude number (Fr a) is proposed to correlate with the equilibrium scour depth (S/D) at offshore monopile foundation in the combined waves and current. An empirical expression for the correlation between S/D and Fr a is given for predicting equilibrium scour depth, which may provide a guide for offshore engineering practice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700