Mean-square convergence of the BDF2-Maruyama and backward Euler schemes for SDE satisfying a global monotonicity condition
详细信息    查看全文
文摘
In this paper the numerical approximation of stochastic differential equations satisfying a global monotonicity condition is studied. The strong rate of convergence with respect to the mean square norm is determined to be \(\frac{1}{2}\) for the two-step BDF-Maruyama scheme and for the backward Euler–Maruyama method. In particular, this is the first paper which proves a strong convergence rate for a multi-step method applied to equations with possibly superlinearly growing drift and diffusion coefficient functions. We also present numerical experiments for the \(\tfrac{3}{2}\)-volatility model from finance and a two dimensional problem related to Galerkin approximation of SPDE, which verify our results in practice and indicate that the BDF2-Maruyama method offers advantages over Euler-type methods if the stochastic differential equation is stiff or driven by a noise with small intensity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700