Monotone Sobolev Mappings of Planar Domains and Surfaces
详细信息    查看全文
  • 作者:Tadeusz Iwaniec ; Jani Onninen
  • 刊名:Archive for Rational Mechanics and Analysis
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:219
  • 期:1
  • 页码:159-181
  • 全文大小:550 KB
  • 参考文献:1.Alessandrini G., Sigalotti M.: Geometric properties of solutions to the anisotropic p-Laplace equation in dimension two. Ann. Acad. Sci. Fenn. Math. 26(1), 249–266 (2001)MATH MathSciNet
    2.Antman, S.S.: Nonlinear problems of elasticity. Applied Mathematical Sciences, 107. Springer, New York, 1995
    3.Astala K., Iwaniec T., Martin G.: Deformations of annuli with smallest mean distortion. Arch. Ration. Mech. Anal. 195(3), 899–921 (2010)MATH MathSciNet CrossRef
    4.Astala, K., Iwaniec, T., Martin, G.: Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton University Press, Princeton, NJ, 2009
    5.Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63(4), 337–403 (1976/77)
    6.Ball, J.M.: Constitutive inequalities and existence theorems in nonlinear elastostatics, Nonlinear analysis and mechanics: Heriot-Watt Symposium (Edinburgh, 1976), vol. I, pp. 18717241. Res. Notes in Math., No. 17, Pitman, London, (1977)
    7.Ball, J.M.: Existence of solutions in finite elasticity. In: Proceedings of the IUTAM Symposium on Finite Elasticity. Martinus Nijhoff, 1981
    8.Ball J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. A 306, 557–611 (1982)MATH CrossRef
    9.Ball, J.M.: Minimizers and the Euler–Lagrange equations, Trends and applications of pure mathematics to mechanics (Palaiseau, 1983), 1–4, Lecture Notes in Phys., 195, Springer, Berlin, 1984
    10.Bethuel, F.: The approximation problem for Sobolev maps between two manifolds. Acta Math. 167, 153–206 (1991)
    11.Ciarlet, P.G.: Mathematical elasticity vol. I. Three-dimensional elasticity, Studies in Mathematics and its Applications, 20. North-Holland Publishing Co., Amsterdam, 1988
    12.Clarkson, J.A.: Uniformly convex spaces. Trans. Am. Math. Soc. 40, 396–414 (1936)
    13.Day M.M.: Some More Uniformly Convex Spaces. Bull. Am. Math. Soc. 47(6), 504–507 (1941)CrossRef
    14.Duren, P.: Harmonic mappings in the plane, Cambridge Tracts in Mathematics, 156. Cambridge University Press, Cambridge, 2004
    15.Hajasz, P.: Sobolev mappings: Lipschitz density is not a bi-Lipschitz invariant of the target. Geom. Funct. Anal. 17(2), 435–467 (2007)
    16.Hajasz, P., Iwaniec, T., Malý J. , Onninen, J.: Weakly differentiable mappings between manifolds. Mem. Am. Math. Soc. 192(899) (2008)
    17.Hang, F., Lin, F.: Topology of Sobolev mappings. Math. Res. Lett. 8, 321–330 (2001)
    18.Hang, F., Lin, F.: Topology of Sobolev mappings II. Acta Math. 191, 55-107 (2003)
    19.Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations, Oxford University Press, New York, 1993
    20.Iwaniec, T., Koh, N.-T., Kovalev, L.V., Onninen, J.: Existence of energy-minimal diffeomorphisms between doubly connected domains. Invent. Math. 186(3), 667–707 (2011)
    21.Iwaniec, T., Koski, A., Onninen, J.: Isotropic p-harmonic systems in 2D, Jacobian estimates and univalent solutions. Rev. Mat. Iberoam. (to appear)
    22.Iwaniec, T., Kovalev, L.V., Onninen, J.: Hopf differentials and smoothing Sobolev homeomorphisms. Int. Math. Res. Not. IMRN, 2012(14), 3256–3277 (2012)
    23.Iwaniec, T., Kovalev, L.V., Onninen, J.: Approximation up to the boundary of homeomorphisms of finite Dirichlet energy. Bull. Lond. Math. Soc., 44(5), 871–881 (2012)
    24.Iwaniec T., Kovalev L.V., Onninen J.: Diffeomorphic approximation of Sobolev homeomorphisms. Arch. Rat. Mech. Anal., 201(3), 1047–1067 (2011)MATH MathSciNet CrossRef
    25.Iwaniec, T., Kovalev, L.V., Onninen, J.: Lipschitz regularity for inner-variational equations. Duke Math. J. 162(4), 643–672 (2013)
    26.Iwaniec, T., Manfredi, J.J.: Regularity of p-harmonic functions on the plane. Rev. Mat. Iberoam. 5(1–2), 1–19 (1989)
    27.Iwaniec, T., Martin, G.: Geometric Function Theory and Non-linear Analysis, Oxford Mathematical Monographs, Oxford University Press, 2001
    28.Iwaniec T., Onninen J.: Deformations of finite conformal energy: Boundary behavior and limit theorems. Trans. Am. Math. Soc. 363(11), 5605–5648 (2011)MATH MathSciNet CrossRef
    29.Iwaniec, T., Onninen, J.: n-Harmonic mappings between annuli. Mem. Am. Math. Soc. 218 (2012)
    30.Iwaniec, T., Onninen, J.: Mappings of least Dirichlet energy and their Hopf differentials. Arch. Ration. Mech. Anal. 209(2), 401–453 (2013)
    31.Iwaniec, T., Onninen, J.: Limits of Sobolev homeomorphisms. J. Eur. Math. Soc. (JEMS), (to appear)
    32.Iwaniec, T., Šverák, V.: On mappings with integrable dilatation. Proc. Am. Math. Soc. 118(1), 181–188 (1993)
    33.Koebe, P.: Über die Uniformisierung reeller algebraischer Kurven, Göttinger Nachrichten, 177–190 (1907)
    34.Koebe, P.: Über die Uniformisierung beliebiger analytischer Kurven, Göttinger Nachrichten, 191–210 (1907)
    35.Koebe, P.: Über die Uniformisierung beliebiger analytischer Kurven, (2),Göttinger Nachrichten, 633–669 (1907)
    36.Kuiper, N.H.: C 1-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58, 545–556 (1955)
    37.Lebesgue H.: Sur le probléme de Dirichlet. Rend. Circ. Palermo 27, 371–402 (1907)CrossRef
    38.Malý, J., Ziemer, W.P.: Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, 51. American Mathematical Society, Providence, RI, 1997
    39.Marsden, J.E., Hughes, T.J.R.: Mathematical foundations of elasticity, Dover Publications, Inc., New York, 1994
    40.McAuley, L.F.: Some fundamental theorems and problems related to monotone mappings. In: Proceedings of First Conference on Monotone Mappings and Open Mappings (SUNY at Binghamton, Binghamton, N.Y., 1970). pp. 1–36. State Univ. of New York at Binghamton, N.Y., 1971
    41.Moise, E.E.: Geometric topology in dimensions 2 and 3, Graduate Texts in Mathematics 47. Springer. New York-Heidelberg, 1977
    42.Morrey C.B.: The Topology of (Path) Surfaces. Am. J. Math. 57(1), 17–50 (1935)MathSciNet CrossRef
    43.Nash, J.: C 1 isometric imbeddings. Ann. Math. (2) 60, 383–396 (1954)
    44.Poincaré, H.: Sur l’uniformisation des fonctions analytiques. Acta Math. 31(1), 1–63 (1908)
    45.Radó, T.: Über den Begriff Riemannschen Fläche. Szeged Univ. Act. 2, 101–121 (1925)
    46.Radó, T. Length and Area, American Mathematical Society, New York, 1948
    47.Šilhavý, M.: The mechanics and thermodynamics of continuous media, Texts and Monographs in Physics. Springer, Berlin, 1997
    48.Truesdell, C., Noll, W.: The non-linear field theories of mechanics, Edited and with a preface by Stuart S. Antman. Springer, Berlin, 2004
    49.Uhlenbeck, K.: Regularity for a class of non-linear elliptic systems. Acta Math. 1383–4, 219–240 (1977)
    50.Uraltseva, N.N.: Degenerate quasilinear elliptic systems, (Russian) Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7, pp. 184–222, 1968
    51.Youngs J.W.T.: Homeomorphic approximations to monotone mappings. Duke Math. J. 15, 87–94 (1948)MATH MathSciNet CrossRef
  • 作者单位:Tadeusz Iwaniec (1) (2)
    Jani Onninen (3)

    1. Department of Mathematics, Syracuse University, Syracuse, NY, 13244, USA
    2. Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
    3. Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35 (MaD), 40014, Jyväskylä, Finland
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Electromagnetism, Optics and Lasers
    Mathematical and Computational Physics
    Complexity
    Fluids
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0673
文摘
An approximation theorem of Youngs (Duke Math J 15, 87–94, 1948) asserts that a continuous map between compact oriented topological 2-manifolds (surfaces) is monotone if and only if it is a uniform limit of homeomorphisms. Analogous approximation of Sobolev mappings is at the very heart of Geometric Function Theory (GFT) and Nonlinear Elasticity (NE). In both theories the mappings in question arise naturally as weak limits of energy-minimizing sequences of homeomorphisms. As a result of this, the energy-minimal mappings turn out to be monotone. In the present paper we show that, conversely, monotone mappings in the Sobolev space \({\,{\fancyscript{W}}^{1,p}\,, \,1 < p < \infty\,}\), are none other than \({\,{\fancyscript{W}}^{1,p}\,}\)-weak (also strong) limits of homeomorphisms. In fact, these are limits of diffeomorphisms. By way of illustration, we establish the existence of traction free energy-minimal deformations for  p -harmonic type energy integrals. Communicated by V. ŠverákT. Iwaniec was supported by the NSF grant DMS-1301558 and the Academy of Finland project 1128331. J. Onninen was supported by the NSF grant DMS-1301570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700