A Concentric Plasmonic Platform for the Efficient Excitation of Surface Plasmon Polaritons
详细信息    查看全文
  • 作者:Nancy Rahbany ; Wei Geng ; Rafael Salas-Montiel ; Sergio de la Cruz…
  • 关键词:Surface plasmon polaritons ; Plasmon ; emitter coupling ; Photoluminescence ; Diffraction grating
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 页码:175-182
  • 全文大小:2,492 KB
  • 参考文献:1.Tame MS, McEnery KR, Özdemir ŞK, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nat Phys 9:329–340CrossRef
    2.Choy JT, Bulu I, Hausmann BJM, Janitz E, Huang I-C, Lončar M (2013) Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings. Appl Phys Lett 103:161101CrossRef
    3.Barthes J, Bouhelier A, Dereux A, des Francs GC des (2013) Coupling of a dipolar emitter into one-dimensional surface plasmon. Sci Rep 3:2734
    4.López-Tejeira F, Rodrigo SG, Martín-Moreno L, García-Vidal FJ, Devaux E, Ebbesen TW, Krenn JR, Radko IP, Bozhevolnyi SI, González MU, Weeber JC, Dereux A (2007) Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys 3:324–328CrossRef
    5.Huang X, Brongersma ML (2013) Compact aperiodic metallic groove arrays for unidirectional launching of surface plasmons. Nano Lett 13:5420–5424CrossRef
    6.Krenn JR, Weeber JC (2004) Surface plasmon polaritons in metal stripes and wires. Philos Trans R Soc Math Phys Eng Sci 362:739–756CrossRef
    7.Hartmann N, Piredda G, Berthelot J, Colas des Francs G, Bouhelier A, Hartschuh A (2012) Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter. Nano Lett 12:177–181CrossRef
    8.Sanders AW, Routenberg DA, Wiley BJ, Xia Y, Dufresne ER, Reed MA (2006) Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett 6:1822–1826CrossRef
    9.Weeber J-C, Dereux A, Girard C, Krenn JR, Goudonnet J-P (1999) Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys Rev B 60:9061CrossRef
    10.Stepanov AL, Krenn JR, Ditlbacher H, Hohenau A, Drezet A, Steinberger B, Leitner A, Aussenegg FR (2005) Quantitative analysis of surface plasmon interaction with silver nanoparticles. Opt Lett 30:1524–1526CrossRef
    11.Liu T, Shen Y, Shin W, Zhu Q, Fan S, Jin C (2014) Dislocated Double-Layer Metal Gratings: An Efficient Unidirectional Coupler. Nano Lett 140618121255001
    12.Di Martino G, Sonnefraud Y, Kéna-Cohen S, Tame M, Özdemir ŞK, Kim MS, Maier SA (2012) Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nano Lett 12:2504–2508CrossRef
    13.Venugopalan P, Zhang Q, Li X, Kuipers L, Gu M (2014) Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens. Opt Lett 39:5744CrossRef
    14.Kumar P, Tripathi VK, Kumar A, Shao X (2015) Launching focused surface plasmon in circular metallic grating. J Appl Phys 117:013103CrossRef
    15.Chen J, Sun C, Li H, Gong Q (2014) Ultra
    oadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit. Nanoscale 6:13487–13493CrossRef
    16.Kéna-Cohen S, Stavrinou PN, Bradley DDC, Maier SA (2013) Confined surface plasmon–polariton amplifiers. Nano Lett 13:1323–1329CrossRef
    17.Chen W, Abeysinghe DC, Nelson RL, Zhan Q (2009) Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. Nano Lett 9:4320–4325CrossRef
    18.Mahboub O, Palacios SC, Genet C, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L, Ebbesen TW (2010) Optimization of bull’s eye structures for transmission enhancement. Opt Express 18:11292–11299CrossRef
    19.Aouani H, Mahboub O, Devaux E, Rigneault H, Ebbesen TW, Wenger J (2011) Plasmonic antennas for directional sorting of fluorescence emission. Nano Lett 11:2400–2406CrossRef
    20.Wang D, Yang T, Crozier KB (2011) Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation. Opt Express 19:2148–2157CrossRef
    21.Kinzel EC, Srisungsitthisunti P, Li Y, Raman A, Xu X (2010) Extraordinary transmission from high-gain nanoaperture antennas. Appl Phys Lett 96:211116CrossRef
    22.Brokmann X, Coolen L, Hermier J-P, Dahan M (2005) Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface. Chem Phys 318:91–98CrossRef
    23.Vion C, Spinicelli P, Coolen L, Schwob C, Frigerio J-M, Hermier J-P, Maître A (2010) Controlled modification of single colloidal CdSe/ZnS nanocrystal fluorescence through interactions with a gold surface. Opt Express 18:7440–7455CrossRef
    24.Valencia CI, Méndez ER, Mendoza BS (2003) Second-harmonic generation in the scattering of light by two-dimensional particles. JOSA B 20:2150–2161CrossRef
    25.Maradudin AA, Michel T, McGurn AR, Méndez ER (1990) Enhanced backscattering of light from a random grating. Ann Phys 203:255–307CrossRef
    26.De la Cruz S, Méndez ER, Macías D, Salas-Montiel R, Adam PM (2012) Compact surface structures for the efficient excitation of surface plasmon-polaritons. Phys Status Solidi B 249:1178–1187CrossRef
    27.De la Cruz S (2013) Diseño de estructuras plasmónicas. CICESE
    28.Choudhury SD, Badugu R, Ray K, Lakowicz JR (2012) Silver-gold nanocomposite substrates for metal-enhanced fluorescence: ensemble and single-molecule spectroscopic studies. J Phys Chem C Nanomater Int 116:5042–5048CrossRef
  • 作者单位:Nancy Rahbany (1)
    Wei Geng (1)
    Rafael Salas-Montiel (1)
    Sergio de la Cruz (2)
    Eugenio R. Méndez (2)
    Sylvain Blaize (1)
    Renaud Bachelot (1)
    Christophe Couteau (1) (3) (4)

    1. Laboratory of Nanotechnology, Instrumentation and Optics, ICD CNRS UMR 6281, University of Technology of Troyes, 10000, Troyes, France
    2. División de Física Applicada, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada, 22860, BC, Mexico
    3. CINTRA CNRS-Thales-NTU, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Singapore, Singapore
    4. Centre for Disruptive Photonics Technologies (CDPT), Nanyang Technological University, Singapore, Singapore
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
We propose a plasmonic device consisting of a concentric ring grating acting as an efficient tool for directional launching and detection of surface plasmon polaritons (SPPs). Numerical simulations and optical characterizations are used to study the fabricated structured gold surface. We demonstrate that this circularly symmetrical plasmonic device provides an efficient interface between free space radiation and SPPs. This structure offers an excellent platform for the study of hybrid plasmonics in general and of plasmon-emitter couplings in particular, such as those occurring when exciting dye molecules placed inside the ring. As illustrated in this work, an interesting property of the device is that the position of excitation determines the direction of propagation of the SPPs, providing a flexible mean of studying their interactions with molecules or dipole-like emitters placed on the surface. Keywords Surface plasmon polaritons Plasmon-emitter coupling Photoluminescence Diffraction grating

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700