Selective synthesis of clinoatacamite Cu2(OH)3Cl and tenorite CuO nanoparticles by pH control
详细信息    查看全文
  • 作者:Christian Engelbrekt (1)
    Phillip Malcho (1)
    Jonas Andersen (1)
    Lijuan Zhang (2)
    Kenny St?hl (1)
    Bin Li (2)
    Jun Hu (2)
    Jingdong Zhang (1)
  • 关键词:Clinoatacamite ; pH control ; Green synthesis ; FTIR ; CuO ; Cu2(OH)3Cl
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:16
  • 期:8
  • 全文大小:2,083 KB
  • 参考文献:1. Bai J, Bo X, Luhana C, Guo L (2011) A novel material based on cupric(II) oxide/macroporous carbon and its enhanced electrochemical property. Electrochim Acta 56:7377-384 2011.05.095" target="_blank" title="It opens in new window">CrossRef
    2. Bertolotti G, Bersani D, Lottici PP, Alesiani M, Malcherek T, Schlueter J (2012) Micro-Raman study of copper hydroxychlorides and other corrosion products of bronze samples mimicking archaeological coins. Anal Bioanal Chem 402:1451-457 216-011-5268-9" target="_blank" title="It opens in new window">CrossRef
    3. Bhalerao-Panajkar RS, Shirolkar MM, Das R, Maity T, Poddar P, Kulkarni SK (2011) Investigations of magnetic and dielectric properties of cupric oxide nanoparticles. Solid State Commun 151:55-0 2010.10.024" target="_blank" title="It opens in new window">CrossRef
    4. Chen JW, Rao GN (2011) CuO Nanoparticles as a room temperature dilute magnetic giant dielectric material. IEEE Trans Magn 47:3772-775 2011.2149505" target="_blank" title="It opens in new window">CrossRef
    5. Chu S, Mueller P, Nocera DG, Lee YS (2011) Hydrothermal growth of single crystals of the quantum magnets: clinoatacamite, paratacamite, and herbertsmithite. Appl Phys Lett 98:092508 2010" target="_blank" title="It opens in new window">CrossRef
    6. Elzey S, Baltrusaitis J, Bian S, Grassian VH (2011) Formation of paratacamite nanomaterials via the conversion of aged and oxidized copper nanoparticles in hydrochloric acidic media. J Mater Chem 21:3162-169
    7. Engelbrekt C, Sorensen KH, Zhang J, Welinder AC, Jensen PS, Ulstrup J (2009) Green synthesis of gold nanoparticles with starch-glucose and application in bioelectrochemistry. J Mater Chem 19:7839-847
    8. Engelbrekt C, Sorensen KH, Lubcke T, Zhang J, Li Q, Pan C, Bjerrum NJ, Ulstrup J (2010) 1.7?nm platinum nanoparticles: synthesis with glucose starch, characterization and catalysis. Chem Phys Chem 11:2844-853
    9. Engelbrekt C, Jensen PS, Sorensen KH, Ulstrup J, Zhang J (2013) Complexity of gold nanoparticle formation disclosed by dynamics study. J Phys Chem C 117:11818-1828 21/jp401883h" target="_blank" title="It opens in new window">CrossRef
    10. Fleet ME (1975) Crystal-structure of paratacamite, Cu2(OH)3Cl. Acta Crystallogr Sect B-Struct Sci 31:183-87
    11. Frost RL (2003) Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochim Acta Part A-Mol Biomol Spectrosc 59:1195-204
    12. Frost R, Martens W, Kloprogge J, Williams P (2002) Raman spectroscopy of the basic copper chloride minerals atacamite and paratacamite: implications for the study of copper, brass and bronze objects of archaeological significance. J Raman Spectrosc 33:801-06 2/jrs.921" target="_blank" title="It opens in new window">CrossRef
    13. Garcia-Martinez O, Millan P, Rojas RM (1986) Gamma-Cu2(OH)3cl as precursor in the preparation of copper(I) and (II) oxides and copper-powder. J Mater Sci 21:4411-418
    14. Grice J, Szymanski J, Jambor J (1996) Crystal structure of clinoatacamite, a new polymorph of Cu2(OH)3Cl. Can Mineral 34:73-8
    15. Hsu Y, Hsu T, Sun C, Nien Y, Pu N, Ger M (2012) Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications. Electrochim Acta 82:152-57 2012.03.094" target="_blank" title="It opens in new window">CrossRef
    16. Jia W, Reitz E, Sun H, Li B, Zhang H, Lei Y (2009) From Cu2(OH)3Cl to nanostructured sisal-like Cu(OH)2 and CuO: synthesis and characterization. J Appl Phys 105:064917
    17. Karthik K, Jaya NV, Kanagaraj M, Arumugam S (2011) Temperature-dependent magnetic anomalies of CuO nanoparticles. Solid State Commun 151:564-68 2011.01.008" target="_blank" title="It opens in new window">CrossRef
    18. Kim YK, Riu DH, Kim SR, Kim BI (2002) Preparation of shape-controlled copper oxide powders from copper-containing solution. Mater Lett 54:229-37 CrossRef
    19. Lee SC, Park S-, Lee SM, Lee JB, Kim HJ (2007) Synthesis and H2 uptake of Cu2(OH)3Cl, Cu(OH)2 and CuO nanocrystal aggregate. Catal Today 120:358-62
    20. Li Y, Yang X, Rooke J, van Tendeloo G, Su B (2010) Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance. J Colloid Interface Sci 348:303-12
    21. Liu X, Meng D, Zheng X, Hagihala M, Guo Q (2011a) Mid-IR and Raman spectral properties of clinoatacamite-structure basic copper chlorides. Adv Mater Res 146-47:1202-205
    22. Liu Y, Ren W, Cui H (2011b) Large-scale synthesis of paratacamite nanoparticles with controlled size and morphology. Micro Nano Lett 6:823-26 2011.0401" target="_blank" title="It opens in new window">CrossRef
    23. Liu J, Jin J, Deng Z, Huang S, Hu Z, Wang L, Wang C, Chen L, Li Y, Van Tendeloo G, Su B (2012) Tailoring CuO nanostructures for enhanced photocatalytic property. J Colloid Interface Sci 384:1- 2012.06.044" target="_blank" title="It opens in new window">CrossRef
    24. Mai YJ, Wang XL, Xiang JY, Qiao YQ, Zhang D, Gu CD, Tu JP (2011) CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim Acta 56:2306-311 2010.11.036" target="_blank" title="It opens in new window">CrossRef
    25. Malcherek T, Schlueter J (2009) Structures of the pseudo-trigonal polymorphs of Cu2(OH)3Cl. Acta Crystallogr Sect B-Struct Sci 65:334-41 CrossRef
    26. Morodomi H, Ienaga K, Inagaki Y, Kawae T, Hagiwara M, Zheng XG (2010) Specific heat study of geometrically frustrated magnet clinoatacamite Cu2Cl(OH)3. International Conference on Magnetism (Icm 2009) 200: UNSP 032047
    27. Parise JB, Hyde BG (1986) The structure of atacamite and its relationship to spinel. Acta Crystallogr Sect C-Crystal Struct Commun 42:1277-280 270186092570" target="_blank" title="It opens in new window">CrossRef
    28. Park JS, Ponomaryov AN, Choi KY, Wang Z, van Tol J, Ok KM, Jang ZH, Yoon SW, Suh BJ (2011) Spin dynamics of the S?=?1/2 pyrochlore system Cu2(OH)3Cl studied by using high-frequency ESR. J Korean Phys Soc 58:270-75
    29. Rahnama A, Gharagozlou M (2012) Preparation and properties of semiconductor CuO nanoparticles via a simple precipitation method at different reaction temperatures. Opt Quantum Electron 44:313-22 2-011-9540-1" target="_blank" title="It opens in new window">CrossRef
    30. Rehman S, Mumtaz A, Hasanain SK (2011) Size effects on the magnetic and optical properties of CuO nanoparticles. J Nanopart Res 13:2497-507 CrossRef
    31. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25?years of image analysis. Nat Methods 9:671-75 2089" target="_blank" title="It opens in new window">CrossRef
    32. Seo S, Lee D, Kim J, Lee G, Kim D (2013) Room-temperature synthesis of CuO/graphene nanocomposite electrodes for high lithium storage capacity. Ceram Int 39:1749-755 2012.08.021" target="_blank" title="It opens in new window">CrossRef
    33. Sharkey JB, Lewin SZ (1971) Conditions governing formation of atacamite and paratacamite. Am Mineral 56:179-92
    34. Stoilova D, Vassileva V (2002) Infrared spectroscopic study of solids in the Cu2(OH)3Cl (Paratacamite)–Zn5(OH)8Cl2.H2O (Simonkolleite) series. C R Acad Bulg Sci 55:51-4
    35. Sun C, Cheng W, Hsu T, Chang C, Chang J, Zen J (2013a) Ultrasensitive and highly stable nonenzymatic glucose sensor by a CuO/graphene-modified screen-printed carbon electrode integrated with flow-injection analysis. Electrochem Commun 30:91-4 2013.02.015" target="_blank" title="It opens in new window">CrossRef
    36. Sun S, Zhang X, Zhang J, Wang L, Song X, Yang Z (2013b) Surfactant-free CuO mesocrystals with controllable dimensions: green ordered-aggregation-driven synthesis, formation mechanism and their photochemical performances. CrystEngComm 15:867-77 2ce26216a" target="_blank" title="It opens in new window">CrossRef
    37. Tao W, Liu X, Zheng X, Meng D, Guo Q (2011a) Mid-Infrared and Raman spectral analysis of geometrically frustrated natural atacamite. Spectrosc Spectr Anal 31:2431-436
    38. Tao W, Liu X, Zheng X, Meng D, Guo Q (2011b) Mid-IR and Raman spectral properties of geometrically frustrated atacamite hydroxyl copper chloride. Adv Mater Res 146-47:972-75
    39. Wang H, Fan C (2013) Copper oxide nanostructures: controlled synthesis and their catalytic performance. Solid State Sci 16:130-33 2012.11.009" target="_blank" title="It opens in new window">CrossRef
    40. Wang B, Wu X, Shu C, Guo Y, Wang C (2010a) Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J Mater Chem 20:10661-0664
    41. Wang X, Hui C, Liu H, Du G, He X, Xi Y (2010b) Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens Actuators B Chem 144:220-25 2009.09.067" target="_blank" title="It opens in new window">CrossRef
    42. Weng S, Zheng Y, Zhao C, Zhou J, Lin L, Zheng Z, Lin X (2013) CuO nanoleaf electrode: facile preparation and nonenzymatic sensor applications. Microchim Acta 180:371-78 2-0920-4" target="_blank" title="It opens in new window">CrossRef
    43. Wills AS, Henry J- (2008) On the crystal and magnetic ordering structures of clinoatacamite, gamma-Cu2(OD)3Cl, a proposed valence bond solid. J Phys Condens Matter 20:472206
    44. Wills AS, Perring TG, Raymond S, Fak B, Henry J- (2008) Telling M (2009) Inelastic neutron scattering studies of the quantum frustrated magnet clinoatacamite, gamma-Cu2(OD)3Cl, a proposed valence bond solid (VBS). Highly Frustrated Magn 145:012056
    45. Xiong Z, Zhang LL, Zhao XS (2011) Visible-light-induced dye degradation over copper-modified reduced graphene oxide. Chem Eur J 17:2428-434 2/chem.201002906" target="_blank" title="It opens in new window">CrossRef
    46. Yang Z, Xu J, Zhang W, Liu A, Tang S (2007) Controlled synthesis of CuO nanostructures by a simple solution route. J Solid State Chem 180:1390-396 2007.02.008" target="_blank" title="It opens in new window">CrossRef
    47. Yang L, Zhu Y, Tong H, Li L, Zhang L (2008) Multistep synthesis of CuO nanorod bundles and interconnected nanosheets using Cu2(OH)3Cl plates as precursor. Mater Chem Phys 112:442-47
    48. Yu L, Zhang G, Wu Y, Bai X, Guo D (2008) Cupric oxide nanoflowers synthesized with a simple solution route and their field emission. J Cryst Growth 310:3125-130 2008.03.026" target="_blank" title="It opens in new window">CrossRef
    49. Yusoff N, Huang NM, Muhamad MR, Kumar SV, Lim HN, Harrison I (2013) Hydrothermal synthesis of CuO/functionalized graphene nanocomposites for dye degradation. Mater Lett 93:393-96 2012.10.015" target="_blank" title="It opens in new window">CrossRef
    50. Zhang X, Zhang D, Ni X, Song J, Zheng H (2008) Synthesis and electrochemical properties of different sizes of the CuO particles. J Nanopart Res 10:839-44 20-9" target="_blank" title="It opens in new window">CrossRef
    51. Zhang J, Xu J, Zhang H, Yin X, Qian J, Liu L, Yang D, Liu X (2011) Fabrication of octahedral Atacamite microcrystals via a hydrothermal route. Micro Nano Lett 6:119-21 2010.0217" target="_blank" title="It opens in new window">CrossRef
    52. Zhao Y, Zhao J, Li Y, Ma D, Hou S, Li L, Hao X, Wang Z (2011) Room temperature synthesis of 2D CuO nanoleaves in aqueous solution. Nanotechnology 22:115604 22/11/115604" target="_blank" title="It opens in new window">CrossRef
    53. Zheng XG, Otabe ES (2004) Antiferromagnetic transition in atacamte Cu2Cl(OH)3. Solid State Commun 130:107-09
    54. Zheng XG, Xu CN (2004) Antiferromagnetic transition in botallackite Cu2Cl(OH)3. Solid State Commun 131:509-11 2004.06.018" target="_blank" title="It opens in new window">CrossRef
    55. Zheng XG, Kawae T, Kashitani Y, Li CS, Tateiwa N, Takeda K, Yamada H, Xu CN, Ren Y (2005a) Unconventional magnetic transitions in the mineral clinoatacamite Cu2Cl(OH)3. Phys Rev B 71:052409
    56. Zheng XG, Mori T, Nishiyama K, Higemoto W, Yamada H, Nishikubo K, Xu CN (2005b) Antiferromagnetic transitions in polymorphous minerals of the natural cuprates atacamite and botallackite Cu2Cl(OH)3. Phys Rev B 71:174404
  • 作者单位:Christian Engelbrekt (1)
    Phillip Malcho (1)
    Jonas Andersen (1)
    Lijuan Zhang (2)
    Kenny St?hl (1)
    Bin Li (2)
    Jun Hu (2)
    Jingdong Zhang (1)

    1. Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kongens Lyngby, Denmark
    2. Division of Physical Biology and Imaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
  • ISSN:1572-896X
文摘
Copper nanomaterials play a role as catalysts in sustainable energy technology and sensor devices. We present a one-pot synthesis for the selective preparation of phase-pure clinoatacamite (Cu2(OH)3Cl) and cupric oxide (CuO) nanoparticles by controlling the pH of the solution. The effect of pH on the phase of the product was systematically investigated utilizing 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Here, the MES buffer was crucial for the synthesis. It not only allowed for selective synthesis by controlling pH but also guided the morphology of the CuO nanoparticles. In addition, it directed the growth of Cu2(OH)3Cl to provide pure clinoatacamite without the presence of related polymorphs. The products were characterized by transmission electron microscopy, infrared spectroscopy, ultraviolet–visible light spectroscopy, X-ray powder diffraction (XRD), scanning transmission X-ray microscopy and atomic force microscopy. Infrared spectroscopy was essential for characterization of closely related polymorphs of Cu2(OH)3Cl indistinguishable by XRD. A plausible mechanism has been proposed and discussed for the formation of the CuO and Cu2(OH)3Cl nanostructures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700