Investigation of metal–buffer interactions using isothermal titration calorimetry
详细信息    查看全文
  • 作者:D. Wyrzykowski (1)
    B. Pilarski (2)
    D. Jacewicz (1)
    L. Chmurzyński (1)
  • 关键词:Isothermal titration calorimetry ; Metal–buffer interactions ; Potentiometric titration ; Proton exchange ; Thermodynamic parameters
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:111
  • 期:3
  • 页码:1829-1836
  • 全文大小:421KB
  • 参考文献:1. Ladbury JE, Doyle ML. Biocalorimetry. 2. Application of calorimetry in the biological sciences. West Sussex: Wiley; 2004. 2/0470011122">CrossRef
    2. Gaisford S, O’Neill MAA. Pharmaceutical isothermal calorimetry. New York: Informa Healthcare USA Inc.; 2007.
    3. Zhang Y, Akilesh S, Wilcox DE. Isothermal titration calorimetry measurements of Ni(II) and Cu(II) binding to His, GlyGlyHis, HisGlyHis, and bovine serum albumin: a critical evaluation. Inorg Chem. 2000;39:3057-4. 21/ic000036s">CrossRef
    4. Hong L, William DB, Hatcher LQ, Simon J. Determining thermodynamic parameters from isothermal calorimetric isotherms of the binding of macromolecules to metal cations originally chelated by a weak ligand. J Phys Chem B. 2008;112:604-1. 21/jp075747r">CrossRef
    5. Grossoehme NE, Akilesh S, Guerinot ML, Wilcox DE. Metal binding thermodynamics of the histidine-rich sequence from the metal-transport protein IRT1 of / Arabidopsis thaliana. Inorg Chem. 2006;45:8500-. 21/ic0606431">CrossRef
    6. Rezaei G, Mirzaie M. A high performance methods for thermodynamic study on the binding of copper ion and glycine with Alzheimer’s amyloid β peptide. J Thermal Anal Calorim. 2009;96:631-. CrossRef
    7. Wyrzykowski D, Zarzeczańska D, Jacewicz D, Chmurzyński L. Investigation of copper(II) complexation by glycylglycine using isothermal titration calorimetry. J Thermal Anal Calorim. 2011;105:1043-. 26-8">CrossRef
    8. Good NE, Winget GD, Winter W, Connoly TN, Izawa S, Singh RMM. Hydrogen ion buffers for biological research. Biochemistry. 1966;4:467-7. 21/bi00866a011">CrossRef
    9. Christensen T, Gooden DM, Kung JE, Toone EJ. Additivity and the physical basis of multivalency effects: a thermodynamic investigation of the calcium EDTA interaction. J Am Chem Soc. 2003;125:7357-6. 21/ja021240c">CrossRef
    10. Brandariz I, Barriada J, Vilarino T, de Vicente MS. Comparison of several calibration procedures for glass electrodes in proton concentration. Monatsh Chem. 2004;135:1475-8. 239-x">CrossRef
    11. Kostrowicki J, Liwo A. A general method for the determination of the stoichiometry of unknown species in multicomponent systems from physicochemical measurements. Comput Chem. 1987;11:195-10. CrossRef
    12. Kostrowicki J, Liwo A. Determination of equilibrium parameters by minimization of an extended sum of squares. Talanta. 1990;37:645-0. 211-W">CrossRef
    13. Kumita H, Jitsukawa K, Masuda H, Einaga H. Structures and electrochemical properties of the Co(III) ternary complexes containing NO3-type tripodal tetradentate ligands and amino acids: effect of the outer coordination sphere on the electrochemical properties. Inorg Chim Acta. 1998;283:160-.
    14. Khalil MMH, Ismail EH, Azim SA, Souaya ER. Synthesis, characterization, and thermal analysis of ternary complexes of nitrilotriacetic acid and alanine or phenylalanine with some transition metals. J Therm Anal Calorim. 2010;101:129-5. CrossRef
    15. Sillen LG, Martel AE. Stability constants of metal–ion complexes. London: The Chemical Society; 1966.
    16. Baker BM, Murphy KP. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys J. 1996;71:2049-5. CrossRef
    17. Wyrzykowski D, Chmurzyński L. Thermodynamics of citrate complexation with Mn2+, Co2+, Ni2+ and Zn2+ ions. J Therm Anal Calorim. 2010;102:61-. 23-4">CrossRef
    18. Wyrzykowski D, Czupryniak J, Ossowski T, Chmurzyński L. Thermodynamic interactions of the alkaline earth metal ions with citric acid. J Therm Anal Calorim. 2010;102:149-4. CrossRef
    19. Grossoehme NE, Spuches AM, Wilcox DE. Application of isothermal titration calorimetry in bioinorganic chemistry. J Biol Inorg Chem. 2010;15:1183-1. CrossRef
    20. Goldberg RN, Kishore N, Lennen RM. Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem Ref Data. 2002;31:231-0. 2">CrossRef
    21. Christensen JJ, Reed MI. Handbook of metal ligand heats and related thermodynamic quantities. New York: Marcel Dekker, Inc.; 1983.
  • 作者单位:D. Wyrzykowski (1)
    B. Pilarski (2)
    D. Jacewicz (1)
    L. Chmurzyński (1)

    1. Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952, Gdańsk, Poland
    2. P.P.H.U. Cerko s.c, Afrodyty 9, 80-299, Gdańsk, Poland
  • ISSN:1572-8943
文摘
Isothermal titration calorimetry (ITC) and potentiometric titration (PT) methods were used to study the interactions of cobalt(II) and nickel(II) ions with buffer substances 2-(N-morpholino)ethanesulfonic acid (Mes), dimethylarsenic acid (Caco), and piperazine-N,N-bis(2-ethanesulfonic acid) (Pipes). Based on the results of PT data, the stability constants were calculated for the metal–buffer complexes (T?=?298.15?K, ionic strength I?=?100?mM NaClO4). Furthermore, calorimetric measurements (ITC) were run in 100?mM Mes, Caco, and Pipes solutions with pH 6, at 298.15?K. The enthalpies (ΔH) of the metal–buffer complexation reactions were calculated indirectly by displacement titration using nitrilotriacetic acid (H3NTA) as a strong-binding, competitive ligand. Finally, to verify obtained results, the number of protons released by H3NTA due to complexation of the cobalt(II) and nickel(II) ions was determined from calorimetric data and compared with results of calculations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700