Application of morphological synthesis for understanding electrode microstructure evolution as a function of applied charge/discharge cycles
详细信息    查看全文
  • 作者:Michael V. Glazoff ; Eric J. Dufek ; Egor V. Shalashnikov
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2016
  • 出版时间:October 2016
  • 年:2016
  • 卷:122
  • 期:10
  • 全文大小:2,112 KB
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Condensed Matter
    Optical and Electronic Materials
    Nanotechnology
    Characterization and Evaluation Materials
    Surfaces and Interfaces and Thin Films
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0630
  • 卷排序:122
文摘
Morphological synthesis operations were employed for understanding electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with reasonable accuracy. The developed techniques could be considered supplementary to a phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase field, the governing equations for the morphological approach are geometry, not physics, based. A similar non-physics-based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis will represent a useful supplementary tool to phase field and will render assistance to unraveling the underlying microstructure–property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to the morphological study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700