Low-rank updates of balanced incomplete factorization preconditioners
详细信息    查看全文
文摘
Let Ax = b be a large and sparse system of linear equations where A is a nonsingular matrix. An approximate solution is frequently obtained by applying preconditioned iterations. Consider the matrix B = A + PQT where \(P, Q \in \mathbb {R}^{n \times k}\) are full rank matrices. In this work, we study the problem of updating a previously computed preconditioner for A in order to solve the updated linear system Bx = b by preconditioned iterations. In particular, we propose a method for updating a Balanced Incomplete Factorization preconditioner. The strategy is based on the computation of an approximate Inverse Sherman-Morrison decomposition for an equivalent augmented linear system. Approximation properties of the preconditioned matrix and an analysis of the computational cost of the algorithm are studied. Moreover, the results of the numerical experiments with different types of problems show that the proposed method contributes to accelerate the convergence.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700