Stress and neutron scattering measurements on linear polymer melts undergoing steady elongational flow
详细信息    查看全文
  • 作者:Ole Hassager (1) OH@kt.dtu.dk
    Kell Mortensen (2)
    Anders Bach (1)
    Kristoffer Almdal (3)
    Henrik Koblitz Rasmussen (4)
    Wim Pyckhout-Hintzen (5)
  • 关键词:Scattering – ; Polymer melt – ; Uniaxial extension – ; Polystyrene
  • 刊名:Rheologica Acta
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:51
  • 期:5
  • 页码:385-394
  • 全文大小:444.8 KB
  • 参考文献:1. Bach A, Almdal K, Rasmussen H, Hassager O (2003a) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36:5174–5179
    2. Bach A, Rasmussen H, Hassager O (2003b) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47:429–441
    3. Baumgaertel M, Schausberger A, Winter H (1990) The relaxation of polymers with linear flexible chains of uniform length. Rheol Acta 29(5):400–408
    4. Bent J, Hutchings L, Richards R, Gough T, Spares R, Coates P, Grillo I, Harlen O, Read D, Graham R, Likhtman A, Groves D, Nicholson T, McLeish TCB (2003) Neutron-mapping polymer flow: scattering, flow visualization, and molecular theory. Science 301:1691–1695
    5. Bird RB, Armstrong RC, Hassager O (1987a) Dynamics of polymer liquids: fluid mechanics, vol 1, 2 edn. Wiley, New York
    6. Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987b) Dynamics of polymer liquids: kinetic theory, vol 2, 2 edn. Wiley, New York
    7. Blanchard A, Graham RS, Heinrich M, Pyckhout-Hintzen W, Richter D, Likhtman AE, McLeish T, Read D, Straube E, Kohlbrecher J (2005) Small angle neutron scattering observation of chain retraction after a large step deformation. Phys Rev Lett 95:166001
    8. Bou茅 F, Bastide J, Buzier M, Lapp A, Herz J, Vilgis TA (1991) Strain-induced large fluctuations during stress relaxation in polymer melts observed by small-angle neutron scattering. Lozenges, butterflies, and related theory. Colloid Polym Sci 269:195–216
    9. Bou茅 F, Nierlich M, Jannink G, Ball R (1982) Polymer coil relaxation in uniaxially strained polystyrene observed by small angle neutron scattering. J Phys 43:137–148
    10. Bou茅 F, Nierlich M, Osaki K (1983) Dynamics of molten polymers on the sub-molecular scale—application of small-angle-neutron-scattering to transient relaxation. Symp Faraday Soc 18:83–105
    11. De Gennes P (1974) Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J Chem Phys 60:5030–5042
    12. Doi M (1992) Introduction to polymer physics. Oxford University Press, Oxford
    13. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford
    14. Fang J, Kr枚ger M, 脰ttinger HC (2000) A thermodynamically admissible reptation model for fast flows of entangled polymers. II. Model predictions for shear and extensional flows. J Rheol 44:1293–1317
    15. Fetters LJ, Lohse DJ, Colby RH (2009) Physical properties of polymers handbook. Springer, Berlin
    16. Hayes C, Bokobza L, Bou茅 F, Mendes E, Monneri L (1996) Relaxation dynamics in bimodal polystyrene melts: a fourier-transform infrared dichroism and small-angle neutron scattering study. Macromolecules 29:5036–5041
    17. Jackson JK, Winter HH (1995) Entanglement and flow behavior of bidisperse blends of polystyrene and polybutadiene. Macromolecules 28:3146–3155
    18. Kabanemi K, H茅tu J-F (2009) Dynamics of monodisperse linear entangled polymer melts in extensional flow: the effect of excluded-volume interactions. Polymer 50:5865–5870
    19. Likhtman A, McLeish T, (2002) Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35:6332–6343
    20. Likhtman AE, Graham RS (2003) Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–Poly equation. J Non-Newton Fluid Mech 114:1–12
    21. Luap C, Muller C, Schweizer T, Venerus DC (2005) Simultaneous stress and birefringence measurements during uniaxial elongation of polystyrene melts with narrow molecular weight distribution. Rheol Acta 45:83–91
    22. Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules 37:3934–3942
    23. Marrucci G, Grizzutti N (1988) Fast flows of concentrated polymers: predictions of the tube model on chain stretching. Gazz Chim Ital 118:179–185
    24. Maschke U, Ewen B, Benmouna M, Meier G, Benoit H (1993) Elastic coherent neutron scattering from mixtures of triblock copolymers and homopolymers in the homogeneous bulk state. Macromolecules 26:6197–6202
    25. McKinley GH, Sridhar T (2002) Filament-stretching rheometry of complex fluids. Annu Rev Fluid Mech 34:375–415
    26. Mead DW, Larson RG, Doi M (1998) A molecular theory for fast flows of entangled polymers. Macromolecules 31:7895–7914
    27. Muller R, Picot C, Zang Y, Frolich D (1990) Polymer chain conformation in the melt during steady elongational flow as measured by sans. temporary network model. Macromolecules 23:2577–2582
    28. Ndoni S, Papadakis CM, Bates F, Almdal K (1995) Laboratory-scale setup for anionic-polymerization under inert atmosphere. Rev Sci Instrum 66:1090–1095
    29. Nielsen J, Rasmussen H, Hassager O, GH M (2006) Elongational viscosity of monodisperse and bidisperse polystyrene melts. J Rheol 50:453–476
    30. Pearson DS, Kiss Fetters LJ, Doi M (1989) Flow-induced birefringence of concentrated polyisoprene solutions. J Rheol 33:517–535
    31. Perkins TT, Smith D, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276:2016–2021
    32. Petrie CJS (1979) Elongational flows. Pitman, London
    33. Read D (2004) Calculation of scattering from stretched copolymers using the tube model: incorporation of the effect of elastic inhomogeneities. Macromolecules 37:5065–5092
    34. Read D, McLeish T (1997) Microscopic theory for the “lozenge” contour plots in scattering from stretched polymer networks. Macromolecules 30:6376–6384
    35. Schieber J, Neergaard J, Gupta S (2003) J Rheol 47:213–233
    36. Straube E, Urban V, Pyckhout-Hintzen W, Richter D, Glinka C (1995) Small-angle neutron scattering investigation of topological constraints and tube deformation in networks. Phys Rev Lett 74:4464–4467
    37. Strunz P, Mortensen K, Janssen S (2004) SANS-II at SINQ. Installation of the former Ris酶-SANS facility. Phys B Condens Matter 350:e783–e786
    38. Underhill PT, Doyle PS (2007) Accuracy of bead-spring chains in strong flows. J non-Newton Fluid Mech 145:109–123
    39. Wagner M, Kheirandish S, O H (2005) Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts. J Rheol 49:1317–1327
    40. Wagner MH, Rol贸n-Garrido VH (2009) Nonlinear rheology of linear polymer melts: modeling chain stretch by interchain tube pressure and rouse time. Korea-Aust Rheol J 21:203–211
    41. Wagner M, Rol贸n-Garrido VH (2010) The interchain pressure effect in shear rheology. Rheol Acta 49:459–471
    42. Westermann S, Urban V, Pyckhout-Hintzen W, Richter D, Straube E (1998) Comment on “lozenge” contour plots in scattering from polymer networks. Phys Rev Lett 80:5449
  • 作者单位:1. Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark2. Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark3. Department of Nanotechnology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark4. Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark5. J眉lich Centre for Neutron Science-1 & Institute for Complex Systems, Forschungszentrum J眉lich, J眉lich, 52425 Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Polymer Sciences
    Mechanical Engineering
    Soft Matter and Complex Fluids
    Food Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-1528
文摘
We use small-angle neutron scattering to measure the molecular stretching in polystyrene melts undergoing steady elongational flow at large stretch rates. The radius of gyration of the central segment of a partly deuterated polystyrene molecule is, in the stretching direction, increasing with the steady stretch rate to a power of about 0.25. This value is about half of the exponent observed for the increase in stress value σ, in agreement with Gaussian behavior. Thus, finite chain extensibility does not seem to play an important role in the strongly non-linear extensional stress behavior exhibited by the linear polystyrene melt.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700