Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea
详细信息    查看全文
  • 作者:Leila Shabani ; Mohammad R. Sabzalian ; Sodabeh Mostafavi pour
  • 关键词:ABC transporters ; Metallothionein ; Mycorrhiza ; Nickel ; Tall fescue ; Schedonorus arundinaceus
  • 刊名:Mycorrhiza
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:26
  • 期:1
  • 页码:67-76
  • 全文大小:773 KB
  • 参考文献:Ahmed A, Hasnain A, Akhtar S, Hussain A, Yasin G, Wahid A, Mahmood S (2013) Antioxidant enzymes as bio-markers for copper tolerance in safflower (Carthamus tinctorius L.). Afr J Biotechnol 9:5441–5444
    Aghababaei F, Raiesi F, Hosseinpur AR (2014) The significant contribution of mycorrhizal fungi and earthworms to maize protection and phytoremediation in Cd-polluted soils. Pedobiologia 57:223–233CrossRef
    Alaoui-Sosse B, Genet P, Vinit-Dunand F, Toussaint M-L, Epron D, Badot P-M (2004) Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci 166:1213–1218CrossRef
    Allen SE (1989) Chemical analysis of ecological materials. Blackwell, London
    Alsokari S (2009) Modulatory role of kinetin on photosynthetic characteristics, yield and yield attributes of cadmium-treated Sorghum bicolor plants. J Appl Sci Res 5:2383–2396
    Amir H, Lagrange A, Hassaϊne N, Cavaloc Y (2013) Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23:585–595PubMed CrossRef
    Arnon DI (1949) Cooper enzymes in isolated chloroplasts. Phenol-oxidase in Beta vulgaris. Plant Physiol 24:1–15PubMed PubMedCentral CrossRef
    Auge RM, Moore JL, Sylvia DM, Cho K (2004) Mycorrhizal promotion of host stomatal conductance in relation to irradiance and temperature. Mycorrhiza 14:85–92PubMed CrossRef
    Baslam M, Esteban R, García-Plazaola JI, Goicoechea N (2013) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Micobiol Biotechnol 97:3119–3128CrossRef
    Cammack R, Fernandez VM, Schneider K (1988) Nickel in hydrogenases from sulphate reducing, photosynthetic, and hydrogen oxidizing bacteria. In: Lancaster JR jr (ed) The bioorganic chemistry of nickel. Verlag-Chemie, Weinheim, pp 167–190
    Carpio LA, Davies FT, Arnold MA (2005) Arbuscular mycorrhizal fungi, organic and inorganic controlled-release fertilizers: effect on growth and leachate of container-grown bush morning glory (Ipomoea carnea ssp. fistulosa) under high production temperatures. J Am Soc Hortic Sci 130:131–139
    Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106:791–802PubMed PubMedCentral CrossRef
    Cicatelli A, Torrigiani P, Todeschini V, Biondi S, Castiglione S, Lingua G (2014) Arbuscular mycorrhizal fungi as a tool to ameliorate the phytoremediation potential of poplar: biochemical and molecular aspects. iForest 7:333–341CrossRef
    Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486PubMed CrossRef
    Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832PubMed PubMedCentral CrossRef
    Davies F, Olalde-Portugal V, Aguilera-Gomez L, Alvarado M, Ferrera-Cerrato R, Boutton T (2002) Alleviation of drought stress of Chile ancho pepper (Capsicum annuum L. cv. San Luis) with arbuscular mycorrhiza indigenous to Mexico. Sci Hortic 92:347–359CrossRef
    Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol 158:777–786CrossRef
    Demir S (2004) Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turk J Biol 28:85–90
    Dong Y, Zhu Y-G, Smith FA, Wang Y, Chen B (2008) Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environ Pollut 155:174–181PubMed CrossRef
    Doubkova P, Sudova R (2014) Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis. Mycorrhiza 24:209–217PubMed CrossRef
    Gajewska E, Skłodowska M (2007) Relations between tocopherol, chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat. J Plant Physiol 164:364–366PubMed CrossRef
    Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514PubMed CrossRef
    Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500CrossRef
    Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremedialion. Planta 223:1115–1122PubMed CrossRef
    Gonzalez-Chavez M (2000) Arbuscular mycorrhizal fungi from As/Cu polluted soils. Dissertation, University of Reading, UK
    Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70:1539–1544PubMed CrossRef
    Gussarsson M (1994) Cadmium-induced alterations in nutrient composition and growth of Betula pendula seedlings: the significance of fine roots as a primary target for cadmium toxicity. J Plant Nutr 17:2151–2163CrossRef
    Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146PubMed CrossRef
    Jana S, Choudhuri MA (1982) Senescence in submerged aquatic angiosperms: effects of heavy metals. New Phytol 90:477–484CrossRef
    Jianfeng H, Xiangui L, Rui Y, Jiang Q, Yufang S (2009) Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.). J Environ Sci 21:1214–1220CrossRef
    Kagan VE, Kisin ER, Kawai K et al (2002) Towards mechanism based antioxidant interventions. Ann NY Acad Sci 959:188–198PubMed CrossRef
    Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140:922–932PubMed PubMedCentral CrossRef
    Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218PubMed CrossRef
    Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res 570:149–161PubMed CrossRef
    Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638CrossRef
    Lagrange A, Ducousso M, Jourand P, Majorel C, Amir H (2011) New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Can J Microbiol 57:21–28PubMed CrossRef
    Latef AAHA (2011) Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza 21:495–503PubMed CrossRef
    Lee J, Donghwan S, Won-yong S, Inhwan H, Youngsook L (2004) Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Mol Biol 54:805–815PubMed CrossRef
    Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836PubMed PubMedCentral CrossRef
    Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382CrossRef
    Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, Muller-Röber B, Schulz B (2002) Multifunctionality of plant ABC transporters—more than just detoxifiers. Planta 214:345–355PubMed CrossRef
    Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes (correlation with copper tolerance). Plant Physiol 109:945–954PubMed PubMedCentral CrossRef
    O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060PubMed CrossRef
    Orlowska E, Przybylowicz W, Orlowski D, Turnau K, Mesjasz-Przybylowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Poll 159:3730–3738CrossRef
    Perotto S, Martino E (2001) Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation? Minerva Biotechnol 13:55–63
    Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:158–161CrossRef
    Poorter H, Villar R (1997) The fate of acquired carbon in plants: chemical composition and construction costs. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic, San Diego, pp 39–72CrossRef
    Porcel R, Barea JM, Ruiz‐Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143CrossRef
    Radisky D, Kaplan J (1999) Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem 274:4481–4484PubMed CrossRef
    Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz KJ, Gianinazzi S, Gianinazzi-Pearson V (2005) Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 16:51–60PubMed CrossRef
    Rivera‐Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi‐Pearson V (2002) Cadmium accumulation and buffering of cadmium‐induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185PubMed CrossRef
    Roitsch T, Ehneß R (2000) Regulation of source/sink relations by cytokinins. Plant Growth Regul 32:359–367CrossRef
    SAS Institute Inc., (1999) SAS/STAT User's Guide. SAS Institute, Inc, Cary, NC
    Singh K, Pandey S (2011) Effect of nickel-stresses on uptake, pigments and antioxidative responses of water lettuce, Pistia stratiotes L. J Environ Biol 32:391–394PubMed
    Singh R, Tripathi R, Dwivedi S, Kumar A, Trivedi P, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032PubMed CrossRef
    Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London
    Soleimani M, Hajabbasi M, Afyuni M, Charkhabi A, Shariatmadari H (2009) Bioaccumulation of nickel and lead by Bermuda grass (Cynodon dactylon) and tall fescue (Festuca arundinacea) from two contaminated soils. Caspian J Environ Sci 7:59–70
    Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya codii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190PubMed CrossRef
    Van den Ende W, Peshev D (2013) Sugars as antioxidants in plants. In: Tuteja N, Gill SS (eds) Crop improvement under adverse conditions. Springer, pp 285–307
    Vivas A, Biró B, Németh T, Barea JM, Azcón R (2006) Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol Biochem 38:2694–2704CrossRef
    Williams LE, Pittman JK, Hall J (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126PubMed CrossRef
    Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189CrossRef
    Yusuf M, Fariduddin Q, Hayat S, Ahmad A (2011) Nickel: an overview of uptake, essentiality and toxicity in plants. B Environ Contam Toxicol 86:1–17CrossRef
    Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57:3575–3582PubMed CrossRef
  • 作者单位:Leila Shabani (1)
    Mohammad R. Sabzalian (2)
    Sodabeh Mostafavi pour (1)

    1. Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
    2. Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Plant Sciences
    Ecology
    Agriculture
    Forestry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1890
文摘
Mycorrhizal fungi are key microorganisms for enhancing phytoremediation of soils contaminated with heavy metals. In this study, the effects of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae (=Glomus mosseae) on physiological and molecular mechanisms involved in the nickel (Ni) tolerance of tall fescue (Festuca arundinacea = Schedonorus arundinaceus) were investigated. Nickel addition had a pronounced negative effect on tall fescue growth and photosynthetic pigment contents, as well as on AMF colonization. Phosphorus content increased markedly in mycorrhizal plants (M) compared to non-inoculated (NM) ones. However, no significant difference was observed in root carbohydrate content between AMF-inoculated and non-inoculated plants. For both M and NM plants, Ni concentrations in shoots and roots increased according to the addition of the metal into soil, but inoculation with F. mosseae led to significantly lower Ni translocation from roots to the aboveground parts compared to non-inoculated plants. ABC transporter and metallothionein transcripts accumulated to considerably higher levels in tall fescue plants colonized by F. mosseae than in the corresponding non-mycorrhizal plants. These results highlight the importance of mycorrhizal colonization in alleviating Ni-induced stress by reducing Ni transport from roots to shoots of tall fescue plants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700