Fast transmission from the dopaminergic ventral midbrain to the sensory cortex of awake primates
详细信息    查看全文
  • 作者:Judith Mylius ; Max F. K. Happel ; Alexander G. Gorkin…
  • 关键词:Deep brain stimulation ; Primate ; Auditory cortex ; Glutamate corelease ; Ventral tegmental area
  • 刊名:Brain Structure and Function
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:220
  • 期:6
  • 页码:3273-3294
  • 全文大小:3,610 KB
  • 参考文献:Amunts K, Morosan P, Hilbig H, Zilles K (2012) Auditory system: cyto-, myelo-, and receptor architecture of the auditory cortex. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier Academic Press, San Diego, pp 1257鈥?287
    Arsenault JT, Nelissen K, Jarraya B, Vanduffel W (2013) Dopaminergic reward signals selectively decrease fMRI activity in primate visual cortex. Neuron 77(6):1174鈥?186PubMed Central PubMed
    Atzori M, Kanold PO, Pineda JC, Flores-Hernandez J, Paz RD (2005) Dopamine prevents muscarinic-induced decrease of glutamate release in the auditory cortex. Neuroscience 134(4):1153鈥?165PubMed
    Au-Young SM, Shen H, Yang CR (1999) Medial prefrontal cortical output neurons to the ventral tegmental area (VTA) and their responses to burst-patterned stimulation of the VTA: neuroanatomical and invivo electrophysiological analyses. Synapse 34:245鈥?55
    Bao S, Chan VT, Merzenich MM (2001) Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412:79鈥?3PubMed
    Bao S, Chan VT, Zhang LI, Merzenich MM (2003) Suppression of cortical representation through backward conditioning. Proc Natl Acad Sci USA 100:1405鈥?408PubMed Central PubMed
    Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14(1):21鈥?7PubMed
    Bernardi G, Cherubini E, Marciani MG, Mercuri N, Stanzione P (1982) Responses of intracellularly recorded cortical neurons to the iontophoretic application of dopamine. Brain Res 245:267鈥?74PubMed
    Birgner C, Nordenankar K, Lundblad M, Mendez JA, Smith C, le Grev猫s M, Galter D, Olson L, Fredriksson A, Trudeau LE, Kullander K, Wall茅n-Mackenzie A (2010) VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation. Proc Natl Acad Sci USA 107(1):389鈥?94PubMed Central PubMed
    Bj枚rklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Bj枚rklund A, H枚kfelt T (eds) Handbook of chemical neuroanatomy: classical transmitter in the rat, vol 2. Elsevier/North Holland, Amsterdam, pp 55鈥?22
    Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68(5):815鈥?34PubMed Central PubMed
    Brosch M, Schulz A, Scheich H (1999) Processing of sound sequences in macaque auditory cortex: response enhancement. J Neurophysiol 82(3):1542鈥?559PubMed
    Brosch M, Scheich H (2008) Tone-sequence analysis in the auditory cortex of awake macaque monkeys. Exp Brain Res 184(3):349鈥?61
    Brosch M, Selezneva E, Scheich H (2011a) Representation of reward feedback in primate auditory cortex. Front Syst Neurosci 5:5PubMed Central PubMed
    Brosch M, Selezneva E, Scheich H (2011b) Formation of associations in auditory cortex by slow changes of tonic firing. Hear Res 271(1鈥?):66鈥?3PubMed
    Budinger E, Laszcz A, Lison H, Scheich H, Ohl FW (2008) Non-sensory cortical and subcortical connections of the primary auditory cortex in Mongolian gerbils: bottom-up and top-down processing of neuronal information via field AI. Brain Res 1220:2鈥?2PubMed
    Campbell MJ, Lewis DA, Foote SL, Morrison JH (1987) Distribution of choline acetyltransferase-, serotonin-, dopamine-beta-hydroxylase-, tyrosine hydroxylase-immunoreactive fibers in monkey primary auditory cortex. J Comp Neurol 261(2):209鈥?20PubMed
    Carr DB, Sesack SR (2000) GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse 38(2):114鈥?23PubMed
    Chiodo LA (1988) Dopamine-containing neurons in the mammalian central nervous system: electrophysiology and pharmacology. Neurosci Biobehav Rev 12(1):49鈥?1PubMed
    Chudasama Y, Robbins TW (2004) Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology 29(9):1628鈥?636PubMed
    Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N (2012) Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482(7383):85鈥?8PubMed Central PubMed
    Delgado JM (1965) Sequential behavior induced repeatedly by stimulation of the red nucleus in free monkeys. Science 148(3675):1361鈥?363PubMed
    Deniau JM, Thierry AM, Feger J (1980) Electrophysiological identification of mesencephalic ventromedial tegmental (VMT) neurons projecting to the frontal cortex, septum and nucleus accumbens. Brain Res 189:315鈥?26PubMed
    Diana M, Garcia-Munoz M, Richards J, Freed CR (1989) Electrophysiological analysis of dopamine cells from the substantia nigra pars compacta of circling rats. Exp Brain Res 74(3):625鈥?30PubMed
    Durstewitz D, Kr枚ner S, G眉nt眉rk眉n O (1999) The dopaminergic innervation of the avian telencephalon. Prog Neurobiol 59(2):161鈥?95PubMed
    Ferron A, Thierry AM, Le Douarin C, Glowinski J (1984) Inhibitory influence of the mesocortical dopaminergic system on spontaneous activity or excitatory response induced from the thalamic mediodorsal nucleus in the rat medial prefrontal cortex. Brain Res 302(2):257鈥?65PubMed
    Fields HL, Hjelmstad GO, Margolis EB, Nicola SM (2007) Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 30:289鈥?16PubMed
    Freeman AS, Bunney BS (1987) Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin. Brain Res 405(1):46鈥?5PubMed
    Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36(20):1983鈥?994PubMed
    Fritz J, Mishkin M, Saunders RC (2005) In search of an auditory engram. Proc Natl Acad Sci USA 102(26):9359鈥?364PubMed Central PubMed
    Fujisawa S, Buzs谩ki G (2011) A 4聽Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 72(1):153鈥?65PubMed Central PubMed
    Gao M, Liu CL, Yang S, Jin GZ, Bunney BS, Shi WX (2007) Functional coupling between the prefrontal cortex and dopamine neurons in the ventral tegmental area. J Neurosci 27:5414鈥?421PubMed
    Gaspar P, Stepniewska I, Kaas JH (1992) Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys. J Comp Neurol 325(1):1鈥?1PubMed
    Gibson AR, Houk JC, Kohlerman NJ (1985) Magnocellular red nucleus activity during different types of limb movement in the macaque monkey. J Physiol 358:527鈥?49PubMed Central PubMed
    Gittelman JX, Perkel DJ, Portfors CV (2013) Dopamine modulates auditory responses in the inferior colliculus in a heterogeneous manner. J Assoc Res Otolaryngol 14(5):719鈥?29PubMed Central PubMed
    Grace AA (1991) Regulation of spontaneous activity and oscillatory spike firing in rat midbrain dopamine neurons recorded in vitro. Synapse 7(3):221鈥?34PubMed
    Grace AA, Bunney BS (1980) Nigral dopamine neurons: intracellular recording and identification with l -dopa injection and histofluorescence. Science 210(4470):654鈥?56PubMed
    Grace AA, Bunney BS (1983) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons鈥?. Identification and characterization. Neuroscience 10(2):301鈥?15PubMed
    Grace AA, Bunney BS (1984a) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4(11):2877鈥?890PubMed
    Grace AA, Bunney BS (1984b) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4(11):2866鈥?876PubMed
    Grace AA, Onn SP (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci 9(10):3463鈥?481PubMed
    Guyenet PG, Aghajanian GK (1978) Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra. Brain Res 150(1):69鈥?4PubMed
    Happel MF, Jeschke M, Ohl FW (2010) Spectral integration in primary auditory cortex attributable to temporally precise convergence of thalamocortical and intracortical input. J Neurosci 30(33):11114鈥?1127PubMed
    Happel MF, Deliano M, Handschuh J, Ohl FW (2014) Dopamine-modulated recurrent corticoefferent feedback in primary sensory cortex promotes detection of behaviorally relevant stimuli. J Neurosci 34(4):1234鈥?247PubMed Central PubMed
    Histed MH, Bonin V, Reid RC (2009) Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63(4):508鈥?22PubMed Central PubMed
    Hnasko TS, Hjelmstad GO, Fields HL, Edwards RH (2012) Ventral tegmental area glutamate neurons: electrophysiological properties and projections. J Neurosci 32(43):15076鈥?5085PubMed Central PubMed
    Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR (2011) Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci 31:2481鈥?487PubMed
    Houk JC, Gibson AR, Harvey CF, Kennedy PR, van Kan PL (1988) Activity of primate magnocellular red nucleus related to hand and finger movements. Behav Brain Res 28(1鈥?):201鈥?06PubMed
    Huang Y, Zacharias N, K枚nig R, Brosch M, Heil P (2012) Physiological mechanisms of working memory in the auditory cortex of humans and nonhuman primates. 34th ARO Meeting Abstr 470:164
    Hur EE, Zaborszky L (2005) VGLUT2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study. J Comp Neurol 483(3):351鈥?73PubMed
    Irvine DR (1980) Acoustic input to neurons in feline red nucleus. Brain Res 200(1):169鈥?73PubMed
    Jacob SN, Ott T, Nieder A (2013) Dopamine regulates two classes of primate prefrontal neurons that represent sensory signals. J Neurosci 33(34):13724鈥?3734PubMed
    Jay TM, Glowinski J, Thierry AM (1995) Inhibition of hippocampoprefrontal cortex excitatory responses by the mesocortical DA system. NeuroReport 6(14):1845鈥?848PubMed
    Jervis BW, Nichols MJ, Johnson TE, Allen E, Hudson NR (1983) A fundamental investigation of the composition of auditory evoked potentials. IEEE Trans Biomed Eng 30(1):43鈥?0PubMed
    Kajikawa Y, Schroeder CE (2011) How local is the local field potential? Neuron 72(5):847鈥?58PubMed Central PubMed
    Kaur S, Rose HJ, Lazar R, Liang K, Metherate R (2005) Spectral integration in primary auditory cortex: laminar processing of afferent input, in vivo and in vitro. Neuroscience 134(3):1033鈥?045PubMed
    Kennedy PR, Gibson AR, Houk JC (1986) Functional and anatomic differentiation between parvicellular and magnocellular regions of red nucleus in the monkey. Brain Res 364(1):124鈥?36PubMed
    Kiyatkin EA (1988) Morphine-induced modification of the functional properties of ventral tegmental area neurons in conscious rat. Int J Neurosci 41(1鈥?):57鈥?0PubMed
    Kiyatkin EA, Zhukov VN (1988) Impulse activity of mesencephalic neurons on nociceptive stimulation in awake rats. Neurosci Behav Physiol 18(5):393鈥?00PubMed
    Kudoh M, Shibuki K (2006) Sound sequence discrimination learning motivated by reward requires dopaminergic D2 receptor activation in the rat auditory cortex. Learn Mem 13:690鈥?98PubMed Central PubMed
    Larsen KD, Yumiya H (1980) The red nucleus of the monkey. Topographic localization of somatosensory input and motor output. Exp Brain Res 40(4):393鈥?04PubMed
    Lavin A, Nogueira L, Lapish CC, Wightman RM, Phillips PE, Seamans JK (2005) Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J Neurosci 25(20):5013鈥?023PubMed
    Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7(1):279鈥?90PubMed
    Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40(3):657鈥?71PubMed
    Lovell JM, Mylius J, Scheich H, Brosch M (2014) Hearing in action; auditory properties of neurones in the red nucleus of alert primates. Front Neurosci 8:105PubMed Central PubMed
    Mantz J, Milla C, Glowinski J, Thierry AM (1988) Differential effects of ascending neurons containing dopamine and noradrenaline in the control of spontaneous activity and of evoked responses in the rat prefrontal cortex. Neuroscience 27(2):517鈥?26PubMed
    Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006) The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 577(Pt 3):907鈥?24PubMed Central PubMed
    Martin RF, Bowden DM (1996) A stereotaxic template atlas of the macaque brain for digital imaging and quantitative neuroanatomy. Neuroimage 4(2):119鈥?50PubMed
    Massion J, Albe-Fessard D (1963) Duality of afferent sensory tracts controlling the activity of the red nucleus. Electroencephalogr Clin Neurophysiol 15:435鈥?54PubMed
    Matsumura M, Sawaguchi T, Kubota K (1990) Modulation of neuronal activities by iontophoretically applied catecholamines and acetylcholine in the primate motor cortex during a visual reaction-time task. Neurosci Res 8(2):138鈥?45PubMed
    Mercuri N, Calabresi P, Stanzione P, Bernardi G (1985) Electrical stimulation of mesencephalic cell groups (A9鈥揂10) produces monosynaptic excitatory potentials in rat frontal cortex. Brain Res 338:192鈥?95PubMed
    Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65(1):37鈥?00PubMed
    M眉ller-Preuss P, Mitzdorf U (1984) Functional anatomy of the inferior colliculus and the auditory cortex: current source density analyses of click-evoked potentials. Hear Res 16(2):133鈥?42PubMed
    Nicholson C, Freeman JA (1975) Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol 38(2):356鈥?68PubMed
    Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434(2):117鈥?65PubMed
    Pirot S, Godbout R, Mantz J, Tassin JP, Glowinski J, Thierry AM (1992) Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Neuroscience 49:857鈥?65PubMed
    Pistis M, Porcu G, Melis M, Diana M, Gessa GL (2001) Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation. Eur J Neurosci 14(1):96鈥?02PubMed
    Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98(3):417鈥?40PubMed
    Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251(4996):947鈥?50PubMed
    Sawaguchi T, Goldman-Rakic PS (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71:515鈥?28PubMed
    Sawaguchi T, Matsumura M (1985) Laminar distributions of neurons sensitive to acetylcholine, noradrenaline and dopamine in the dorsolateral prefrontal cortex of the monkey. Neurosci Res 2(4):255鈥?73PubMed
    Sawaguchi T, Matsumura M, Kubota K (1986) Catecholamine sensitivities of motor cortical neurons of the monkey. Neurosci Lett 66(2):135鈥?40PubMed
    Sayers BM, Beagley HA, Henshall WR (1974) The mechanism of auditory evoked EEG responses. Nature 247(5441):481鈥?83PubMed
    Scheibner T, T枚rk I (1987) Ventromedial mesencephalic tegmental (VMT) projections to ten functionally different cortical areas in the cat: topography and quantitative analysis. J Comp Neurol 259(2):247鈥?65PubMed
    Schicknick H, Schott BH, Budinger E, Smalla KH, Riedel A, Seidenbecher CI, Scheich H, Gundelfinger ED, Tischmeyer W (2008) Dopaminergic modulation of auditory cortex-dependent memory consolidation through mTOR. Cereb Cortex 18:2646鈥?658PubMed Central PubMed
    Schicknick H, Reichenbach N, Smalla KH, Scheich H, Gundelfinger ED, Tischmeyer W (2012) Dopamine modulates memory consolidation of discrimination learning in the auditory cortex. Eur J Neurosci 35(763鈥?4):2012
    Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1鈥?7PubMed
    Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593鈥?599PubMed
    Schultz W, Preuschoff K, Camerer C, Hsu M, Fiorillo CD, Tobler PN, Bossaerts P (2008) Explicit neural signals reflecting reward uncertainty. Philos Trans R Soc Lond B Biol Sci 363(1511):3801鈥?811
    Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1鈥?8PubMed
    Smith Y, Wichmann T, Delong MR (2013) Corticostriatal and mesocortical dopamine systems: do species differences matter? Nat Rev Neurosci 15(1):63PubMed Central PubMed
    Stark H, Scheich H (1997) Dopaminergic and serotonergic neurotransmission systems are differentially involved in auditory cortex learning: a long-term microdialysis study of metabolites. J Neurochem 68:691鈥?97PubMed
    Steffensen SC, Svingos AL, Pickel VM, Henriksen SJ (1998) Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. J Neurosci 18(19):8003鈥?015PubMed
    Steinschneider M, Tenke CE, Schroeder CE, Javitt DC, Simpson GV, Arezzo JC, Vaughan HG Jr (1992) Cellular generators of the cortical auditory evoked potential initial component. Electroencephalogr Clin Neurophysiol 84(2):196鈥?00PubMed
    Steinschneider M, Reser DH, Fishman YI, Schroeder CE, Arezzo JC (1998) Click train encoding in primary auditory cortex of the awake monkey: evidence for two mechanisms subserving pitch perception. J Acoust Soc Am 104(5):2935鈥?955PubMed
    Sup猫r H, Roelfsema PR (2005) Chronic multiunit recordings in behaving animals: advantages and limitations. Prog Brain Res 147:263鈥?82PubMed
    Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9(1鈥?):321鈥?53PubMed
    Szabo J, Cowan WM (1984) A stereotaxic atlas of the brain of the cynomolgus monkey (Macaca fascicularis). J Comp Neurol 222(2):265鈥?00PubMed
    Ter-Mikaelian M, Sanes DH, Semple MN (2007) Transformation of temporal properties between auditory midbrain and cortex in the awake Mongolian gerbil. J Neurosci 27(23):6091鈥?102PubMed
    Thierry AM, Blanc G, Sobel A, Stinus L, Golwinski J (1973) Dopaminergic terminals in the rat cortex. Science 182(4111):499鈥?01PubMed
    Thierry AM, Deniau JM, Herve D, Chevalier G (1980) Electrophysiological evidence for non-dopaminergic mesocortical and mesolimbic neurons in the rat. Brain Res 201(1):210鈥?14PubMed
    Thierry AM, Godbout R, Mantz J, Pirot S, Glowinski J (1992) Differential influence of dopaminergic and noradrenergic afferents on their target cells in the rat prefrontal cortex. Clin Neuropharmacol 15 Suppl 1 Pt A:139鈥?40
    Tseng KY, Mallet N, Toreson KL, Le Moine C, Gonon F, O鈥橠onnell P (2006) Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation in vivo. Synapse 59(7):412鈥?17PubMed Central PubMed
    Wang HL, Qi J, Morales M (2013) Activation of ventral tegmental area glutamate neurons is rewarding. SfN Abstr 389:05
    Watanabe Y, Kajiwara R, Takashima I (2009) Optical imaging of rat prefrontal neuronal activity evoked by stimulation of the ventral tegmental area. NeuroReport 20:875鈥?80PubMed
    Weis T, Puschmann S, Brechmann A, Thiel CM (2012) Effects of l -dopa during auditory instrumental learning in humans. PLoS ONE 7(12):e52504PubMed Central PubMed
    Williams SM, Goldman-Rakic PS (1998) Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 8:321鈥?45PubMed
    Yamaguchi T, Wang HL, Li X, Ng TH, Morales M (2011) Mesocorticolimbic glutamatergic pathway. J Neurosci 31(23):8476鈥?490PubMed
    Zilles K, Palomero-Gallagher N, Grefkes C, Scheperjans F, Boy C, Amunts K, Schleicher A (2002) Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur Neuropsychopharmacol 12(6):587鈥?99PubMed
  • 作者单位:Judith Mylius (1)
    Max F. K. Happel (2)
    Alexander G. Gorkin (3)
    Ying Huang (1)
    Henning Scheich (4) (5)
    Michael Brosch (1) (5)

    1. Special Laboratory Primate Neurobiology, Leibniz Institute for Neurobiology, Brenneckestra脽e 6, 39118, Magdeburg, Germany
    2. Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestra脽e 6, 39118, Magdeburg, Germany
    3. Institute of Psychology, Russian Academy of Sciences, Yaroslavskaya Street 13, 129366, Moscow, Russia
    4. Emeritus Group Lifelong Learning, Leibniz Institute for Neurobiology, Brenneckestra脽e 6, 39118, Magdeburg, Germany
    5. Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Universit盲tsplatz 2, 39106, Magdeburg, Germany
  • 刊物主题:Neurosciences; Cell Biology; Neurology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1863-2661
文摘
Motivated by the increasing evidence that auditory cortex is under control of dopaminergic cell structures of the ventral midbrain, we studied how the ventral tegmental area and substantia nigra affect neuronal activity in auditory cortex. We electrically stimulated 567 deep brain sites in total within and in the vicinity of the two dopaminergic ventral midbrain structures and at the same time, recorded local field potentials and neuronal discharges in cortex. In experiments conducted on three awake macaque monkeys, we found that electrical stimulation of the dopaminergic ventral midbrain resulted in short-latency (~35 ms) phasic activations in all cortical layers of auditory cortex. We were also able to demonstrate similar activations in secondary somatosensory cortex and superior temporal polysensory cortex. The electrically evoked responses in these parts of sensory cortex were similar to those previously described for prefrontal cortex. Moreover, these phasic responses could be reversibly altered by the dopamine D1-receptor antagonist SCH23390 for several tens of minutes. Thus, we speculate that the dopaminergic ventral midbrain exerts a temporally precise, phasic influence on sensory cortex using fast-acting non-dopaminergic transmitters and that their effects are modulated by dopamine on a longer timescale. Our findings suggest that some of the information carried by the neuronal discharges in the dopaminergic ventral midbrain, such as the motivational value or the motivational salience, is transmitted to auditory cortex and other parts of sensory cortex. The mesocortical pathway may thus contribute to the representation of non-auditory events in the auditory cortex and to its associative functions. Keywords Deep brain stimulation Primate Auditory cortex Glutamate corelease Ventral tegmental area

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700