The Pengguan tectonic dome of Longmen Mountains, Sichuan Province: Mesozoic denudation of a Neoproterozoic magmatic arc-basin system
详细信息    查看全文
  • 作者:DanPing Yan (1)
    MeiFu Zhou (2)
    GuoQing Wei (1)
    JianFeng Gao (2)
    ShaoFeng Liu (1)
    Ping Xu (1)
    XiaoYing Shi (1)
  • 关键词:Pengguan tectonic dome ; Neoproterozoic magmatic arc ; Mesozoic denudation
  • 刊名:Science China Earth Sciences
  • 出版年:2008
  • 出版时间:November 2008
  • 年:2008
  • 卷:51
  • 期:11
  • 页码:1545-1559
  • 全文大小:1883KB
  • 参考文献:1. Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP zircon geochronological and geochemical evidence for Neo-proterozoic arc-related magmatism along the western margin of the Yangtze Block, South China. Earth Planet Sci Lett, 2002, 196: 51-7 CrossRef
    2. Zhou M F, Kennedy A K, Sun M, et al. Neo-proterozoic arc-related mafic Intrusions in the northern margin of South China: Implications for accretion of Rodinia. J Geol, 2002, 110: 611-18 CrossRef
    3. Zhou M F, Ma Y X, Yan D P, et al. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Res, 2006, 144: 19-8 CrossRef
    4. Druschke P, Hanson A D, Yan Q, et al. Stratigraphic and U-Pb SHRIMP detrital zircon evidence for a Neoproterozoic continental arc, Central China: Rodinia implications. J Geol, 2006, 114: 627-36 CrossRef
    5. Sun W H, Zhou M F, Zhao J H. Geochemistry and tectonic significance of basaltic lavas in the Neoproterozoic Yanbian Group (Southern Sichuan Province, SW China). Int Geol Rev, 2007, 49: 554-71 CrossRef
    6. Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Res, 2007, 152: 27-7 CrossRef
    7. Li Z X, Zhang L, Powell C M. South China in Rodinia: Part of the missing link between Australia-East Antarctica and Laurentia? Geology, 1995, 23: 407-10 CrossRef
    8. Li Z X, Li X H, Kinny P, et al. The breakup of Rodinia: Did it start with a mantle plume beneath South China. Earth Planet Sci Lett, 1999, 173: 171-81 CrossRef
    9. Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Res, 2003, 122: 85-09 CrossRef
    10. Yan D P, Zhou M F, Song H, et al. Structural Style and tectonic significance of the Jianglang dome in the Eastern Margin of the Tibetan Plateau. J Struct Geol, 2003, 25: 765-79 CrossRef
    11. Sichuan Bureau of Geology and Mineral Resources. Regional Geology of Sichuan Province (in Chinese with English abstract). Beijing: Geological Publishing House, 1991. 1-65
    12. Burchfiel B C, Chen Z, Liu Y, et al. Tectonics of the Longmen Mountains and adjacent regions, central China. Int Geol Rev, 1995, 37: 661-36 CrossRef
    13. Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Ann Rev Earth Planet Sci, 2000, 28: 211-80 CrossRef
    14. Zhou M F, Yan D P, Vasconcelos P M, et al. Structural and geochronological constraints on the tectono-thermal evolution of the Danba domal Terrane, eastern margin of the Tibetan Plateau. J Asian Earth Sci, 2008, 33: 414-27 CrossRef
    15. Worley B A, Wilson C J L. Deformation partitioning and foliation reactivation during transpressional orogenesis, an example from the central Longmen Shan, China. J Struct Geol, 1996, 18: 395-11 CrossRef
    16. Yan D P, Liu H, Wei G Q, et al. Collapse of the Songpan-Ganze Orogenic belt resulted by a Mesozoic middle-crustal ductile channel flow: Evidences from deformation and metamorphism within the Sinian-Paleozoic strata in the hinterland of Longmenshan foreland thrust belt (in Chinese with English abstract). Earth Sci Front, 2008, 15: 186-98 CrossRef
    17. Liu H, Yan D P, Wei G Q, et al. Deformation and metamorphic sequence of Bikou Terrane in the northwest margin of Yangtze plate: Implications for extension collapse and transition of Songpan-Ganze orogenic belt (in Chinese with English abstract). Acta Geol Sin, 2008, 82: 464-74
    18. Song B, Zhang Y H, Wan Y S, et al. Target preparation, age determination and discussion about some phenomenon of SHRIMP zircon isotopic analysis (in Chinese with English abstract). Geol Rev, 2002, 5: 26-0
    19. Yuan H L, Wu F Y, Gao S, et al. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chin Sci Bull, 2003, 48(24): 2411-421
    20. Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res, 2004, 11: 353-70 CrossRef
    21. Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl, 1995, 19: 1-3 CrossRef
    22. Ludwig K R. ISOPLOT: A plotting and regression program for radiogenic-isotope data. U.S. Geological Survey Open-File Report, 1991. 1-9
    23. Pearce N J G, Perkins W T, Westgate J A, et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl, 1997, 21: 115-44 CrossRef
    24. Fu Y L, Lu X Q, Zhang S H, et al. 40Ar/39Ar dating techniques and age determination of some geological samples (in Chinese with English abstract). Bull Inst Geol, CAGS, 1987, 17: 85-07
    25. Onstott T C, Peacock M W. Argon retentivity of hornblendes: A field experiment in a slowly-cooled metamorphic Terrane. Geochim Cosmochim Acta, 1987, 51: 2891-903 CrossRef
    26. Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma-mass spectrometry. Talanta, 2000, 51: 507-13 CrossRef
    27. McDougal I, Harrison T M. Geochronology and Thermochronology by the 40Ar/39Ar Method. New York: Oxford University Press, 1999. 1-69
    28. Whalen J B, Currie K L, Chappell B W, et al. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol, 1987, 95: 407-19 CrossRef
    29. Zhang P, Xu C, Zhang Q, Zhou Z, Geochemistry of Pengguan complex in the Longmenshan region, Western Sichuan province, SW China: Petrogenesis and tectonic implications (in Chinese with English abstract). Geotect Metall, 2008, 32: 105-16
    30. Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol, 1984, 25: 956-83
    31. Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 2007, 97: 1-9 CrossRef
    32. Poitrasson F, Duthou J L, Pin C. The relationship between petrology and Nd isotopes as evidence for contrasting anorogenic granites gneiss: example of the Corsican Province (SE France). J Petrol, 1995, 36: 1251-274
    33. Jiang Y H, Ling H F, Jiang S Y, et al. Petrogenesis of a Late Jurassic Peraluminous Volcanic Complex and its High-Mg, Potassic, Quenched Enclaves at Xiangshan, Southeast China. J Petrol, 2005, 46: 1121-154 CrossRef
    34. Pati?o Douce A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 1997, 25: 743-46 CrossRef
    35. Creaser R A, Price R C, Wormald R J. A-type granites revisited; assessment of a residual-source model. Geology, 1991, 19: 163-66 CrossRef
    36. King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. J Petrol, 1997, 38: 371-91 CrossRef
    37. Pati?o Deuce A E, Beard J S. Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar. J Petrol, 1995, 36:707-38
    38. Watkins J, Clemens J, Treloar P. Archaean TTGs as sources of younger granitic magmas: Melting of sodic metatonalites at 0.6-.2 GPa. Contrib Mineral Petrol, 2007, 154: 91-10 CrossRef
    39. Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol, 1982, 80:189-00 CrossRef
    40. Mark G. Petrogenesis of Mesoproterozoic K-rich granitoids, southern Mt Angelay igneous complex, Cloncurry district, Northwest Queensland. Aust J Earth Sci, 1999, 46: 933-49 CrossRef
    41. Landenberger B, Collins W J. Derivation of A-type Granites from a Dehydrated Charnockitic Lower Crust: Evidence from the Chaelundi Complex, Eastern Australia. J Petrol, 1996, 37: 145-70 CrossRef
    42. Zhao J X, Ellis D J, Kilpatrick J A, et al. Geochemical and Sr-Nd isotopic study of charnockites and related rocks in the northern Prince Charles Mountains, East Antarctica: Implications for charnockite petrogenesis and proterozoic crustal evolution. Precambrian Res, 1997, 81: 37-6 CrossRef
    43. Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites. Geol Soc Am Abs Programs, 1979, 11: 468
    44. Eby G N. Chemical subdivision of the A-type granitoids; petrogenetic and tectonic implications. Geology, 1992, 20: 641-44 CrossRef
    45. Shellnutt J G, Zhou M F. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume. Chem Geol, 2007, 243: 286-16 CrossRef
    46. Maniar P D, Piccoli P M. Tectonic discrimination of granitoids. Geol Soc Am Bull, 1989, 101: 635-43 CrossRef
    47. Sun W H, Zhou M F, Yan D P, et al. Proverence and tectonic setting of the Neoproterozoic Yanbian Group. Precambrian Res, 2008, doi: 10.1016/j.precamres.2008.00
  • 作者单位:DanPing Yan (1)
    MeiFu Zhou (2)
    GuoQing Wei (1)
    JianFeng Gao (2)
    ShaoFeng Liu (1)
    Ping Xu (1)
    XiaoYing Shi (1)

    1. State Key Laboratory of Geological Processes and Mineral Resources, Key Laboratory of Lithospheric Tectonics and Lithoprobing Technology of Ministry of Education, China University of Geosciences, Beijing, 100083, China
    2. Department of Earth Sciences, The University of Hong Kong, Hong Kong SAR, China
  • ISSN:1869-1897
文摘
Neoproterozoic igneous and metamorphic complexes occur as tectonic domes in the Longmen Mountains of the western margin of the Yangtze Block, and are important in reconstructing the Rodinian supercontinent and constraining the timing and mechanism of tectonic denudational processes. The Pengguan dome consists of granitic intrusions and metamorphic rocks of the Huangshuihe Group and is tectonically overlain by ductilly deformed Sinian to Paleozoic strata. The plutonic intrusions consist of granites with abundant amphibolite enclaves. New LA-ICP-MS zircon U-Pb dating yielded an emplacement age of 809±3 Ma and a protolith age of 844±6 Ma for the granite. The granitic rocks have geochemical signatures typical of A-type granites, indicating their formation under an extensional environment, by melting of newly formed tonalite-trondhjemite-granodiorite (TTG) rocks. A detachment fault, characterized by variable ductile shear deformation of S-C fabric and ESE-ward kinematics, separates the Pengguan dome from the Sinian-Paleozoic cover. 40Ar/39Ar dating of muscovite from the mylonite in the detachment fault of the dome demonstrates that ductile deformation occurred at ?60 Ma. This study indicates the existence of a Neoproterozoic magmatic arc-basin system, which was denudated by a Jurassic middle crustal ductile channel flow along the Longmenshan thrust belt.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700